An improved feedrate scheduling method for NURBS interpolation in five-axis machining

2020 ◽  
Vol 64 ◽  
pp. 70-90 ◽  
Author(s):  
Yicun Sang ◽  
Chenglin Yao ◽  
Yiqian Lv ◽  
Gaiyun He
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 63794-63812 ◽  
Author(s):  
Hepeng Ni ◽  
Chengrui Zhang ◽  
Shuai Ji ◽  
Tianliang Hu ◽  
Qizhi Chen ◽  
...  

Author(s):  
De-Ning Song ◽  
Yu-Guang Zhong ◽  
Jian-Wei Ma

Scheduling of the five-axis spline toolpath feedrate is of great significance for high-quality and high-efficiency machining using five-axis machine tools. Due to the fact that there exists nonlinear relationship between the Cartesian space of the cutting tool and the joint space of the five feed axes, it is a challenging task to schedule the five-axis feedrate under axial drive constraints. Most existing methods are researched for routine short spline toolpaths, however, the five-axis feedrate scheduling method expressed for long spline toolpaths is limited. This article proposes an interval adaptive feedrate scheduling method based on a dynamic moving look-ahead window, so as to generate smooth feedrate for long five-axis toolpath in a piecewise manner without using the integral toolpath geometry. First, the length of the look-ahead window which equals to that of the toolpath interval is determined in case of abrupt braking at the end of the toolpath. Then, the interval permissible tangential feed parameters in terms of the velocity, acceleration, and jerk are determined according to the axial drive constraints at each toolpath interval. At the same time, the end velocity of the current interval is obtained through looking ahead the next interval. Using the start and end velocities and the permissible feed parameters of each interval, the five-axis motion feedrate is scheduled via an interval adaptive manner. Thus, the feedrate scheduling task for long five-axis toolpath is partitioned into a series of extremely short toolpaths, which realizes the efficient scheduling of long spline toolpath feedrate. Experimental results on two representative five-axis spline toolpaths demonstrate the feasibility of the proposed approach, especially for long toolpaths.


2020 ◽  
Vol 33 (7) ◽  
pp. 2055-2069 ◽  
Author(s):  
Liping WANG ◽  
Xing YUAN ◽  
Hao SI ◽  
Feiyu DUAN

2021 ◽  
Vol 112 (11-12) ◽  
pp. 3117-3136
Author(s):  
Guangxi Li ◽  
Haitao Liu ◽  
Wei Yue ◽  
Juliang Xiao

2010 ◽  
Vol 443 ◽  
pp. 330-335 ◽  
Author(s):  
Yu Han Wang ◽  
Jing Chun Feng ◽  
Sun Chao ◽  
Ming Chen

In order to exploit the advantages of five-axis flank milling method for space free surface machining to the full, a definition of non-equidistant dual-NURBS tool path is presented first. On this basis, the constraint of velocity of points on the tool axis and the constraint of scanning area of the tool axis are deduced. Considering both of these constraints, an adaptive feed five-axis dual-NURBS interpolation algorithm is proposed. The simulation results show that the feedrate with the proposed algorithm satisfies both of the constraints and the machining time is reduced by 38.3% in comparison with the constant feed interpolator algorithm.


2015 ◽  
Vol 77 (23) ◽  
Author(s):  
Hendriko Hendriko

This paper presents the method to calculate the geometries of instantaneous chip in five-axis milling. The inclination angle changes in between two consecutive CC-points were taken into account in the calculation. In the first stage, the engagement angle, the axial depth of cut and cut width were determined through the mapping technique. The engagement point of the Work piece Coordinate System (WCS) was mapped to a Tool Coordinate System (TCS). In the second stage, the engagement angle and depth of cut, which were defined in the first stage were then used as a primary input to obtain the cut thickness and cut width. Two simulation tests have been presented to verify the ability of the proposed model to predict the cut geometry. The first tests revealed that the inclination angle makes the size of the cut thickness and cut width fluctuate. The cut width increased when the tool inclination angle increased. For the cut thickness, its magnitude was influenced by two effects, the orientation effect and the tooth path effect. The final result was a compromise between these two effects. In the second simulation test, the proposed model was successfully implemented to support the feedrate scheduling method.


Sign in / Sign up

Export Citation Format

Share Document