depth of cut
Recently Published Documents


TOTAL DOCUMENTS

2270
(FIVE YEARS 677)

H-INDEX

39
(FIVE YEARS 9)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Paweł Sutowski ◽  
Krzysztof Nadolny ◽  
Marzena Sutowska ◽  
Piotr Myśliński ◽  
Adam Gilewicz ◽  
...  

AbstractA properly implemented strategy regarding the planer knife regeneration process, may not only restore the original cutting ability of the tool, but even increase its operational quality, including its durability for industrial woodworking processes. This article presents experimental results and discussion in respect of sharpening planer knives with cubic boron nitride grinding wheels. Both the grinding conditions and machining surface quality were analyzed. Application of improper size or loads of abrasive grains may lead to the appearance of grinding burns on a machined surface, or result in a surface with cracks and grooves. The results of the measurements carried out indicate that surfaces with reduced values of roughness and waviness parameters can be obtained, even up to 22% (as in the case of the reduced peak height parameter, Spk) in relation to new knives, prepared at a factory. The value of St and Sds parameters are almost the same as reference knife (deviation up to 3%). Due to machining marks, the total waviness exceeds 33%. Our research also shows that due to the technological quality of the knife surfaces, it is beneficial to use CBN grains with a low depth of cut (ae no more than 0.02 mm), but a moderate or high feed rate (the best choice is about 470 mm/min for vft). Presented results constitute an important know-how for the grinding process with the use of grinders used by operators (like WEINIG Rondamat 980) during the sharpening of planer cutter heads in the wood industry.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


2022 ◽  
pp. 93-102
Author(s):  
Do Duc Trung ◽  
Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article


2022 ◽  
pp. 363-379
Author(s):  
Fredrick M. Mwema ◽  
Job Maveke Wambua

Polymers have been adopted industrially in the manufacture of lenses for optical applications due to their attractive properties such as high hardness, high strength, high ductility, high fracture toughness, and also their low thermal and electrical conductivities. However, they have limited machinability and are therefore classified as hard-to-machine materials. This study conducts a critical review on the machining of various polymers and polymeric materials, with particular focus on poly (methyl methacrylate) (PMMA). From the review it was concluded that various machining parameters affect the output qualities of polymers and which include the spindle speed, the feed rate, vibrations, the depth of cut, and the machining environment. These parameters tend to affect the surface roughness, the cutting forces, delamination, cutting temperatures, tool wear, precision, vibrations, material removal rate, and the mechanical properties such as hardness, among others. A multi-objective optimization of these machining parameters is therefore required, especially in the machining of PMMA.


This study evaluates CNC milling parameters (spindle speed, depth of cut, and feed rate) on medical-grade PMMA. A single objective analysis conducted showed that the optimal material removal rate (MRR) occurs at a spindle speed of 1250 rpm, a depth of cut of 1.2 mm, and a feed rate of 350 mm/min. The ANOVA showed that feed rate is the most significant factor towards the MRR, and spindle speed (11.83%) is the least contributing. The optimal surface roughness (Ra) occurred at spindle speed of 500 rpm, depth of cut of 1.2 mm, and feed rate of 200 mm/min. The milling factors were insignificant. A regression analysis for prediction was also conducted. Further, a multi-objective optimization was conducted using the Grey Relational Analysis. It showed that the best trade-off between the MRR and the Ra could be obtained from a combination of 1250 rpm (spindle speed), 1.2 mm (depth of cut), and 350 mm/min (feed rate). The depth of cut was the largest contributor towards the grey relational grade (54.48%), followed by the feed rate (10.36%), and finally, the spindle speed (4.28%).


2022 ◽  
Vol 9 ◽  
pp. 2
Author(s):  
Raviraj Shetty ◽  
Adithya Hegde

From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).


Author(s):  
Bhagyashri Dilip Chaudhari

Abstract: In drilling, a cylindrical hole is produced in workpiece, removing the material inside the workpiece. The cutting tool used in drilling operation is called ‘Twist Drill’; it rotates and allows the material to be removed from the workpiece in the form of chips and thus drill the hole. Cutting fluids or coolants are used to perform this operation smoothly. The coating on the drill bits helps to reduce friction in the cut and the heat buildup in the drill bit. Coating also helps in protecting against corrosion. The present work focuses on the features of uncoated High Speed Steel (HSS) Twist Drill bit and Titanium Nitride (TiN) and Titanium Aluminium Nitride (TiAlN) coated on HSS Drills. The workpiece material was Mild Steel and the drilling operation was done using normal machining condition i.e. in presence of coolant. The cutting parameters used are cutting speed (35.5 m / min), spindle speed (1500 rpm), feed rate (0.2 mm / rev.), depth of cut (10 mm). These parameters were kept constant. Temperatures were measured with the help of thermal imaging camera and with the help of ANSYS software thermal analysis were done. Experimental results showed that the average rise in temperature of uncoated HSS tool was higher as compared to TiN coated and TiAlN coated HSS tools. TiAlN coated drills showed the least average rise in temperature. Keywords: High Speed Steel (HSS) Drill, TiN and TiAlN Coated HSS Twist Drill, Mild Steel (MS), Thermal Analysis, ANSYS Software.


Author(s):  
Mehmet A Erden ◽  
Mahir Akgün

In this work, it was investigated the effect of molybdenum (Mo) addition on machinability, mechanical properties, and microstructure of Cr steels produced by using powder metallurgy method. Tensile and hardness experiments were applied to define the mechanical properties of the produced Cr-PM steels. The machining experiments have been also performed without coolant on a CNC vertical machining center at three different cutting speeds (150, 210, and 270 m/min), two different feed rates (0.4 and 0.8 mm/tooth), and constant depth of cut (0.5 mm). The machinability of the alloys was evaluated in regard to surface roughness (Ra) and tool wear (Vb). The results indicated that that Cr-PM steel with 5% Mo addition by weight had the highest yield, tensile strength, and hardness, and the best surface quality was obtained in this sample in terms of surface roughness. However, according to Vb measurement results, the cutting performance of the cutting inserts wasnegative affected by MoC(N), CrC(N), and MoCrC(N) precipitates formed in the microstructure of PM steel.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2021 ◽  
Vol 19 (12) ◽  
pp. 30-36
Author(s):  
Zuhair I. Al Mashhadani ◽  
Muneam Hussein Ali

In this study, external longitudinal turning operation was performed on (AISI 1020) steel to examine the influences of coating of the cutting tool on the machined surface roughness. The cutting tools used were coated and uncoated cemented carbide inserts. The tests are performed at four spindle speeds (80, 315, 500, and 800) rpm, at each of which two feed rates (0.2 and 0.5mm/rev) and two depth of cut (0.5 and 0.7mm) were used. Taguchi design of experiments (DOE) with a designed mathematical predictive model was used to investigate the effect of the coating layer and determine the machining conditions for minimum surface roughness. Accordingly, a suitable mixed orthogonal array L16 (3*4) was selected. The results showed that the surface roughness produced by using TiC coated inserts for identical machining conditions was lower than that produced due to uncoated tool by 41% to 53%. Regression analysis showed that the non-linear quadratic polynomial equation appears to be more suitable for representing the relation of spindle speed, feed rate, and depth of cut with the surface roughness. Taguchi method and the designed mathematical model had been used to predict the optimal cutting conditions. A confirmation test for the obtained results verified that the designed Taguchi experiments and the designed model successfully investigated the effect of the coating on the surface roughness. Data fit ver.9 and Mtb14 software had been employed to achieve the object of the presented work.


Sign in / Sign up

Export Citation Format

Share Document