milling method
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 180)

H-INDEX

31
(FIVE YEARS 7)

Author(s):  
Liangyu Liu ◽  
Yixin Li ◽  
Ya'nan Meng ◽  
Ying Xue ◽  
Bin Yang ◽  
...  

In this study, nickel-bound porous carbon (Ni-PC) was prepared by introducing Ni2+ into dipotassium ethylenediaminetetraacetate (EDTA-2K) derived nitrogen-doped porous carbon (PC) using the ball milling method. This solvent-free mechanochemical method...


2022 ◽  
Author(s):  
Tao Liu ◽  
Feng Sun ◽  
Meihua Huang ◽  
Lunhui Guan

Atomically dispersed cobalt-nitrogen-carbon (Co-N-C) catalysts have appeared as the potential substitutes to the costly noble-metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). After...


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7889
Author(s):  
Lixiang Zhu ◽  
Meishuai Zou ◽  
Xiaodong Zhang ◽  
Lichen Zhang ◽  
Xiaoxuan Wang ◽  
...  

The main problem for the application of hydrogen generated via hydrolysis of metal alloys is the low hydrogen generation rate (HGR). In this paper, active Al alloys were prepared using a new coupled method-melting-mechanical crushing-mechanical ball milling method to enhance the HGR at room temperature. This method contains three steps, including the melting of Al, Ga, In, and Sn ingots with low melting alloy blocks and casting into plates, then crushing alloy plate into powders and ball milling with chloride salts such as NiCl2 and CoCl2 were added during the ball milling process. The microstructure and phase compositions of Al alloys and reaction products were investigated via X-ray diffraction and scanning electron microscopy with energy dispersed X-ray spectroscopy. The low-melting-point Ga-In -Sn (GIS) phases contain a large amount of Al can act as a transmission medium for Al, which improves the diffusion of Al to Al/H2O reaction sites. Finer GIS phases after ball milling can further enhance the diffusion of Al and thus enhance the activity of Al alloy. The hydrogen generation performance through hydrolysis of water with Al at room temperature was investigated. The results show that the H2 generation performance of the Al-low-melting point alloy composite powder is significantly higher than the results reported to date. The highest H2 generation rate and H2 conversion efficiency can reach 5337 mL·min−1·g−1 for the hydrolysis of water with 1 g active alloy.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1496
Author(s):  
Fujie Liu ◽  
Ming Zhang ◽  
Yongkang Gao ◽  
Haojie Tan ◽  
Hongping Li ◽  
...  

With the rapid growth in fuel demand, deep desulfurization of fuel oil is vitally necessary for the sake of health and environmental protection. In this work, a kind of magnetic ionic liquid supported silica is prepared by a facile ball milling method, and applied in the aerobic oxidative desulfurization of organosulfurs in fuel. The experimental results indicated that ball milling procedure can increase the specific surface area of samples, which is beneficial to oxidative desulfurization process. Under the optimal reaction conditions, the prepared materials can have an entire removal of aromatic sulfur compounds as well as a good recycling ability. Moreover, the introduction of Fe3O4 did not decline the desulfurization performance, but help the catalyst to be easily separated after reaction.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012057
Author(s):  
Rathesh Kumaran Ulaganathan ◽  
Nur Aiman Mohamad Senusi ◽  
An’Amt Mohamed Noor ◽  
Wan Nazwanie Wan Abdullah ◽  
Mohamad Asyraf Mohd Amin ◽  
...  

Abstract This research was targeted to use the planetary ball milling method to extract cellulose nanofibers (CNFs) from commercial microcrystalline cellulose and also to utilize the obtained extracted cellulose nanofibers (CNFs) as reinforcement in polyvinyl alcohol (PVA) thin film. The effect of cellulose nanofibers (CNFs) on the mechanical and physical properties of polyvinyl alcohol (PVA) thin films was investigated. As a result of the study, we found that the thin film’s tensile strength is good, and the surface morphology of the CNFs suspension enhances the bonding between the PVA and the reinforcement. Tyndall effect was accurate with the visible light scattering through CNF suspension, and the CNF/PVA thin film exhibited transparent thin film. In contrast, the CNF/PVA composite’s mechanical and physical properties are good due to the excellent dispersion and absence of agglomeration of CNFs. The prepared PVA/CNF biocomposite would be a suitable candidate to be implemented as biodegradable food packaging material.


2021 ◽  
Vol 32 (3) ◽  
pp. 103-116
Author(s):  
Jamal Moammar Aldabib ◽  
◽  
Zainal Arifin Mohd Ishak ◽  

Hydroxyapatite (HA) has great potential as a reinforcing filler for poly (methyl methacrylate) (PMMA) denture base materials. Nevertheless, filler particles need to be homogeneously distributed throughout the PMMA particles to get the maximum benefit from using the filler. Therefore, the physical mixing of the powder components (PMMA and the filler) is strongly preferred to provide the required dispersion of the filler in the matrix. However, conventional techniques that have been tried, such as hand mixing and stirrer mixing techniques, were not effective. Therefore, the current study was designed to experimentally investigate the effect of different mixing times on the fracture toughness of PMMA/HA using a developed ball milling method. In this study, heat cured PMMA reinforced with 15 wt% HA ceramic powder was ground for different times (i.e., 10, 20, 30, and 40 min) via the technique of planetary ball milling (PBM). The ground powder mixtures were used for the fabrication of denture base testing samples. The particle size and distribution of the PMMA/HA composites after milling for several times were determined by the laser light scattering technique. The X-ray diffraction (XRD) patterns of the PMMA/HA composites were obtained. However, no new phase was observed. The effects of mixing time using the PBM technique on the fracture toughness were investigated. The effect of mixing time on the microporosity (voids) on the fractured surface of PMMA/HA was studied with field emission scanning electron microscopy (FESEM). Within the limitation of the current study, 30 min is considered the optimum mixing time for the tested PMMA/HA composite.


Sign in / Sign up

Export Citation Format

Share Document