scholarly journals Corrigendum to “Climate-induced denudational changes during the Little Ice Age inferred from 10Be (meteoric)/9Be ratio: A case study from the core monsoon zone of India [Quat. Int. https://doi.org/10.1016/j.quaint.2020.10.041]”

Author(s):  
Chinmay Dash ◽  
Soumya Prakash Dhal ◽  
Pankaj Kumar ◽  
Pitambar Pati ◽  
Sundeep Chopra
Keyword(s):  
Ice Age ◽  
2014 ◽  
pp. 145-155 ◽  
Author(s):  
Abdolmajid Naderi Beni ◽  
Hamid Lahijani ◽  
Morsen Pourkerman ◽  
Rahman Jokar ◽  
Muna Hosseindoust ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Elhoucine Essefi ◽  
Samir Mefteh ◽  
Mounir Medhioub ◽  
Chokri Yaich

This paper is meant to investigate the climatic and volcanic signals within the sedimentary filling of sebkha Mhabeul through a thermomagnetic study of a 37 cm length core. Values of the magnetic susceptibility at ambient temperature show that the core encompasses four climatic stages: the Warming Present (WP), the Little Ice Age (Late LIA), Early Little Ice Age (ELIA), and the Medieval Climate Anomalies (MCA). Added to the subcycles, the spectral analysis shows the individualization of an 888 yr cycle probably related to solar activity. The heating at 250°C is good-for-nothing since it was useful neither for climatic investigation nor for tephras layers detection. Heating at 700°C generated the complete loss of the climatic signal. On the other hand, it allowed the detection of the previously identified tephras layers. Further, it highlighted the presence of other tephras layers. The extraction by the bromoform confirms the presence of these tephras. The use of the same methodology may allow the detection of tephras layers within other sebkhas.


2020 ◽  
Author(s):  
Jesús Alcalá Reygosa ◽  
Néstor Campos ◽  
Melaine Le Roy ◽  
Bijeesh Kozhikkodan Veettil ◽  
Adam Emmer

<p>The Little Ice Age (LIA) occurred between CE 1250 and 1850 and is considered a period of moderate cold conditions, especially recorded in the northern hemisphere. Numerous recent studies provide robust evidence of glacier advances worldwide during the LIA and a dramatic retreat since then. These studies combined investigation of moraine records, paintings, topographical and glaciological measurements as well as multitemporal aerial and terrestrial photographs and satellite images. For instance, post-LIA glaciers retreat amounts ~60 % in the Alps (Paul et al., 2020), ~88 % in the Pyrenees (Rico et al., 2016) and 89 % in the Bolivian Andes (Ramírez et al., 2001). However, there is scarce knowledge in Mexico about the glacier changes since the LIA. The reconstructions are limited to the Iztaccíhualt volcano where Schneider et al. (2008) established a glacier retreat of 95 %.</p><p>Here, we reconstruct the glacier evolution since the LIA to CE 2015 of the Mexican highest ice-capped volcano: Pico de Orizaba (19° 01´ N, 97° 16´W, 5,675 m a.s.l.). Due to Pico de Orizaba is in the outer Tropic, the most plausible scenario is a glacier evolution similar to the Bolivian Andes and especially to the Iztaccíhualt volcano. To carry out this research, we mapped the glacier area during the LIA, based on moraine record, and the area during 1945, 1958, 1971, 1988, 1994, 2003 and 2015 using a previous map elaborated by Palacios and Vázquez-Selem (1996), aerial orthophotographs and satellite images. The geographical mapping and the calculus of area, minimum altitude and volume of the glacier were generated with the software ArcGIS 10.2.2. The results show that glacier area retreated 92% between the LIA (8.8 km<sup>2</sup>) and 2015 (0.67 km<sup>2</sup>), being a drastic glacier loss in agreement with the Bolivian Andes and Iztaccíhualt. Therefore, mexican glaciers have experienced the major shrunk since LIA that implies a highly sensitive reaction to global warming.</p><p>This research was supported by the Project UNAM-DGAPA-PAPIIT grant IA105318.</p><p>References</p><p>Palacios, D., Vázquez-Selem, L. 1996. Geomorphic effects of the retreat of Jamapa glacier, Pico de Orizaba volcano (Mexico). Geografiska Annaler, Series A, Physical Geography 78, 19-34.</p><p>Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., and Smiraglia C. 2020. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2 https://doi.org/10.5194/essd-2019-213.</p><p>Ramírez, E., Francou, B., Ribstein, P., Descloitres, M., Guérin, R., Mendoza, J., Gallaire, R., Pouyaud, B., Jordan, E. 2001. Small glaciers disappearing in the tropical Andes: a case study in Bolivia: Glaciar Chacaltaya (16° S). Journal of Glaciology 47 (157), 187-194.</p><p>Rico I., Izagirre E., Serrano E., López-Moreno J.I., 2016. Current glacier area in the Pyrenees : an updated assessment 2016. Pirineos 172, doi: http://dx.doi.org/10.3989/Pirineos.2017.172004.</p><p>Schneider, D., Delgado-Granados, H., Huggel, C., Kääb, A. 2008. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico). Natural Hazards and Earth System Sciences 8, 559-571.</p><p> </p><p> </p>


2000 ◽  
Vol 32 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Maurizio D'Orefice ◽  
Massimo Pecci ◽  
Claudio Smiraglia ◽  
Renato Ventura

Geomorphology ◽  
2017 ◽  
Vol 295 ◽  
pp. 551-562 ◽  
Author(s):  
Thomas Zanoner ◽  
Alberto Carton ◽  
Roberto Seppi ◽  
Luca Carturan ◽  
Carlo Baroni ◽  
...  
Keyword(s):  
Ice Age ◽  

2000 ◽  
Vol 32 (2) ◽  
pp. 197 ◽  
Author(s):  
Maurizio D'Orefice ◽  
Massimo Pecci ◽  
Claudio Smiraglia ◽  
Renato Ventura

Sign in / Sign up

Export Citation Format

Share Document