satellite images
Recently Published Documents





2022 ◽  
Vol 73 (1) ◽  
pp. 83-90

Kalpana satellite images in real time available by India meteorological department (IMD), contain relevant inputs about the cloud in infra-red (IR), water vapor (WV), and visible (VIS) bands. In the present study an attempt has been made to forecast precipitation at six stations in western Himalaya by using extracted grey scale values of IR and WV images. The extracted pixel values at a location are trained for the corresponding precipitation at that location. The precipitation state at 0300 UTC is considered to train the model for precipitation forecast with 24 hour lead time. The satellite images acquired in IR (10.5 - 12.5 µm) and WV (5.7 - 7.1 µm) bands have been used for developing Artificial Neural Network (ANN) model for qualitative as well as quantitative precipitation forecast. The model results are validated with ground observations and skill scores are computed to check the potential of the model for operational purpose. The probability of detection at the six stations varies from 0.78 for Gulmarg in Pir-Panjal range to 0.95 for Dras in Greater Himalayan range. Overall performance for qualitative forecast is in the range from 61% to 84%. Root mean square error for different locations under study is in the range 5.81 to 8.7.

2022 ◽  
Vol 14 (2) ◽  
pp. 381
Carolina Filizzola ◽  
Angelo Corrado ◽  
Nicola Genzano ◽  
Mariano Lisi ◽  
Nicola Pergola ◽  

The paper provides, for the first time, a long-term (>10 years) analysis of anomalous transients in Earth’s emitted radiation over Turkey and neighbouring regions. The RST (Robust Satellite Techniques) approach is used to identify Significant Sequences of Thermal Anomalies (SSTAs) over about 12 years (May 2004 to October 2015) of night-time MSG-SEVIRI satellite images. The correlation analysis is performed with earthquakes with M ≥ 4, which occurred in the investigated period/region within a pre-defined space-time volume around SSTA occurrences. It confirms, also for Turkey, the possibility to qualify SSTAs among the candidate parameters of a multi-parametric system for time-Dependent Assessment of Seismic Hazard (t-DASH). After analysing about 4000 images (about 400 million of single satellite records), just 155 SSTAs (about 4 every 100 images) were isolated; 115 (74% out of the total) resulted in earthquake-related (false-positive rate 26%). Results of the error diagram confirms a non-casual correlation between RST-based SSTAs and earthquake occurrences, with probability gain values up to 2.2 in comparison with the random guess. The analysis, separately performed on Turkish areas characterized by different faults and earthquakes densities, demonstrates the SSTA correlation with a dynamic seismicity more than with static tectonic settings.

2022 ◽  
Vol 15 ◽  
Ying Yu ◽  
Jun Qian ◽  
Qinglong Wu

This article proposes a bottom-up visual saliency model that uses the wavelet transform to conduct multiscale analysis and computation in the frequency domain. First, we compute the multiscale magnitude spectra by performing a wavelet transform to decompose the magnitude spectrum of the discrete cosine coefficients of an input image. Next, we obtain multiple saliency maps of different spatial scales through an inverse transformation from the frequency domain to the spatial domain, which utilizes the discrete cosine magnitude spectra after multiscale wavelet decomposition. Then, we employ an evaluation function to automatically select the two best multiscale saliency maps. A final saliency map is generated via an adaptive integration of the two selected multiscale saliency maps. The proposed model is fast, efficient, and can simultaneously detect salient regions or objects of different sizes. It outperforms state-of-the-art bottom-up saliency approaches in the experiments of psychophysical consistency, eye fixation prediction, and saliency detection for natural images. In addition, the proposed model is applied to automatic ship detection in optical satellite images. Ship detection tests on satellite data of visual optical spectrum not only demonstrate our saliency model's effectiveness in detecting small and large salient targets but also verify its robustness against various sea background disturbances.

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 126
Shaowu Bao ◽  
Zhan Zhang ◽  
Evan Kalina ◽  
Bin Liu

The HAFS model is an effort under the NGGPS and UFS initiatives to create the next generation of hurricane prediction and analysis system based on FV3-GFS. It has been validated extensively using traditional verification indicators such as tracker error and biases, intensity error and biases, and the radii of gale, damaging and hurricane strength winds. While satellite images have been used to verify hurricane model forecasts, they have not been used on HAFS. The community radiative transfer model CRTM is used to generate model synthetic satellite images from HAFS model forecast state variables. The 24 forecast snapshots in the mature stage of hurricane Dorian in 2019 are used to generate a composite model synthetic GOES-R infrared brightness image. The composite synthetic image is compared to the corresponding composite image generated from the observed GOES-R data, to evaluate the model forecast TC vortex intensity, size, and asymmetric structure. Results show that the HAFS forecast TC Dorian agrees reasonably well with the observation, but the forecast intensity is weaker, its overall vortex size smaller, and the radii of its eye and maximum winds larger than the observed. The evaluation results can be used to further improve the model. While these results are consistent with those obtained by traditional verification methods, evaluations based on composite satellite images provide an additional benefit with richer information because they have near-real-times spatially and temporally continuous high-resolution data with global coverage. Composite satellite infrared images could be used routinely to supplement traditional verification methods in the HAFS and other hurricane model evaluations. Note since this study only evaluated one hurricane, the above conclusions are only applicable to the model behavior of the mature stage of hurricane Dorian in 2019, and caution is needed to extend these conclusions to expect model biases in predicting other TCs. Nevertheless, the consistency between the evaluation using composite satellite images and the traditional metrics, of hurricane Dorian, shows that this method has the potential to be applied to other storms in future studies.

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Ruizhe Wang ◽  
Wang Xiao

Since the traditional adaptive enhancement algorithm of high-resolution satellite images has the problems of poor enhancement effect and long enhancement time, an adaptive enhancement algorithm of high-resolution satellite images based on feature fusion is proposed. The noise removal and quality enhancement areas of high-resolution satellite images are determined by collecting a priori information. On this basis, the histogram is used to equalize the high-resolution satellite images, and the local texture features of the images are extracted in combination with the local variance theory. According to the extracted features, the illumination components are estimated by Gaussian low-pass filtering. The illumination components are fused to complete the adaptive enhancement of high-resolution satellite images. Simulation results show that the proposed algorithm has a better adaptive enhancement effect, higher image definition, and shorter enhancement time.

C. Najjaj ◽  
H. Rhinane ◽  
A. Hilali

Abstract. Researchers in computer vision and machine learning are becoming increasingly interested in image semantic segmentation. Many methods based on convolutional neural networks (CNNs) have been proposed and have made considerable progress in the building extraction mission. This other methods can result in suboptimal segmentation outcomes. Recently, to extract buildings with a great precision, we propose a model which can recognize all the buildings and present them in mask with white and the other classes in black. This developed network, which is based on U-Net, will boost the model's sensitivity. This paper provides a deep learning approach for building detection on satellite imagery applied in Casablanca city, Firstly, to begin we describe the terminology of this field. Next, the main datasets exposed in this project which’s 1000 satellite imagery. Then, we train the model UNET for 25 epochs on the training and validation datasets and testing the pretrained weight model with some unseen satellite images. Finally, the experimental results show that the proposed model offers good performance obtained as a binary mask that extract all the buildings in the region of Casablanca with a higher accuracy and entirety to achieve an average F1 score on test data of 0.91.

Sign in / Sign up

Export Citation Format

Share Document