Lung volume recruitment maneuvers and respiratory system mechanics in mechanically ventilated mice

2009 ◽  
Vol 169 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Vincenzo Cannizzaro ◽  
Luke J. Berry ◽  
Philip K. Nicholls ◽  
Graeme R. Zosky ◽  
Debra J. Turner ◽  
...  
1989 ◽  
Vol 66 (6) ◽  
pp. 2496-2501 ◽  
Author(s):  
W. A. Zin ◽  
M. A. Martins ◽  
P. R. Silva ◽  
R. S. Sakae ◽  
A. L. Carvalho ◽  
...  

In 16 anesthetized paralyzed mechanically ventilated rats, respiratory system mechanics and rib cage dimensions were determined both before and after wide abdominal opening. In eight animals the end-inflation occlusion method disclosed statistically significant postoperative increases in respiratory system elastance (from 4.84 to 6.49 cmH2O.ml-1) and resistance (from 0.224 to 0.300 cmH2O.ml-1.s); the latter resulted from a rise of its uneven component (from 0.161 to 0.209 cmH2O.ml-1.s). In the remaining rats, rib cage morphometry at functional residual capacity after surgery showed significant decreases in lower rib cage circumference and anteroposterior and lateral diameters, whereas there was an increase in upper rib cage circumference and a fall in its lateral diameter. When these parameters were measured at end-inspiratory lung volume, the difference between intact and open abdomen were less striking; only lower rib cage circumference and upper rib cage lateral diameter significantly decreased postoperatively. Because surgery induced an expiratory volume of only 0.1 ml, it can be concluded that abdominal opening redistributed regional volumes within the lung, leading to increased unevenness in the system.


Author(s):  
Genevieve C. Digby ◽  
Christine L. D'Arsigny ◽  
Andrew J. Samis ◽  
Ramiro J. Arellano ◽  
Glorianne V. Ropchan ◽  
...  

1995 ◽  
Vol 21 (10) ◽  
pp. 808-812 ◽  
Author(s):  
G. Conti ◽  
V. Vilardi ◽  
M. Rocco ◽  
R. A. DeBlasi ◽  
A. Lappa ◽  
...  

1991 ◽  
Vol 71 (6) ◽  
pp. 2425-2433 ◽  
Author(s):  
G. Polese ◽  
A. Rossi ◽  
L. Appendini ◽  
G. Brandi ◽  
J. H. Bates ◽  
...  

In ten mechanically ventilated patients, six with chronic obstructive pulmonary disease (COPD) and four with pulmonary edema, we have partitioned the total respiratory system mechanics into the lung (l) and chest wall (w) mechanics using the esophageal balloon technique together with the airway occlusion technique during constant-flow inflation (J. Appl. Physiol. 58: 1840–1848, 1985). Intrinsic positive end-expiratory pressure (PEEPi) was present in eight patients (range 1.1–9.8 cmH2O) and was due mainly to PEEPi,L (80%), with a minor contribution from PEEPi,w (20%), on the average. The increase in respiratory elastance and resistance was determined mainly by abnormalities in lung elastance and resistance. Chest wall elastance was slightly abnormal (7.3 +/- 2.2 cmH2O/l), and chest wall resistance contributed only 10%, on the average, to the total. The work performed by the ventilator to inflate the lung (WL) averaged 2.04 +/- 0.59 and 1.25 +/- 0.21 J/l in COPD and pulmonary edema patients, respectively, whereas Ww was approximately 0.4 J/l in both groups, i.e., close to normal values. We conclude that, in mechanically ventilated patients, abnormalities in total respiratory system mechanics essentially reflect alterations in lung mechanics. However, abnormalities in chest wall mechanics can be relevant in some COPD patients with a high degree of pulmonary hyperinflation.


Critical Care ◽  
2007 ◽  
Vol 11 (Suppl 2) ◽  
pp. P15
Author(s):  
P Dostal ◽  
M Senkerik ◽  
V Cerny ◽  
R Parizkova ◽  
J Suchankova ◽  
...  

2002 ◽  
Vol 92 (5) ◽  
pp. 1802-1807 ◽  
Author(s):  
Scott Wagers ◽  
Lennart Lundblad ◽  
Henrique T. Moriya ◽  
Jason H. T. Bates ◽  
Charles G. Irvin

Respiratory system resistance (R) and elastance (E) are commonly estimated by fitting the linear equation of motion P = EV + RV˙ + P0 ( Eq. 1 ) to measurements of respiratory pressure (P), lung volume (V), and flow (V˙). However, the respiratory system is unlikely to behave linearly under many circumstances. We determined the importance of respiratory system nonlinearities in two groups of mechanically ventilated Balb/c mice [controls and mice with allergically inflamed airways (ova/ova)], by assessing the impact of the addition of nonlinear terms (E2V2 and R2V˙‖V˙‖) on the goodness of model fit seen with Eq. 1 . Significant improvement in fit (51.85 ± 4.19%) was only seen in the ova/ova mice during bronchoconstriction when the E2V2alone was added. An improvement was also observed with addition of the E2V2 term in mice with both low and high lung volumes ventilated at baseline, suggesting a volume-dependent nonlinearity of E. We speculate that airway closure in the constricted ova/ova mice accentuated the volume-dependent nonlinearity by decreasing lung volume and overdistending the remaining lung.


Sign in / Sign up

Export Citation Format

Share Document