An Extended Recursive Decomposition Algorithm for Dynamic Seismic Reliability Evaluation of Lifeline Networks with Dependent Component Failures

Author(s):  
Jun He
2019 ◽  
Vol 29 (07) ◽  
pp. 1165-1191
Author(s):  
Courtney R. Gibbons ◽  
Robert Huben ◽  
Branden Stone

In the spirit of Boij–Söderberg theory, we introduce a recursive decomposition algorithm for the Betti diagram of a complete intersection using the diagram of a complete intersection defined by a subset of the original generators. This alternative algorithm is the main tool that we use to investigate stability and compatibility of the Boij–Söderberg decompositions of related diagrams; indeed, when the biggest generating degree is sufficiently large, the alternative algorithm produces the Boij–Söderberg decomposition. We also provide a detailed analysis of the Boij–Söderberg decomposition for Betti diagrams of codimension four complete intersections where the largest generating degree satisfies the size condition.


Author(s):  
Hindolo George-Williams ◽  
Geng Feng ◽  
Frank PA Coolen ◽  
Michael Beer ◽  
Edoardo Patelli

Dependent failures impose severe consequences on a complex system’s reliability and overall performance, and a realistic assessment, therefore, requires an adequate consideration of these failures. System survival signature opens up a new and efficient way to compute a system’s reliability, given its ability to segregate the structural from the probabilistic attributes of the system. Consequently, it outperforms the well-known system reliability evaluation techniques, when solicited for problems like maintenance optimisation, requiring repetitive system evaluations. The survival signature, however, is premised on the statistical independence between component failure times and, more generally, on the theory of weak exchangeability, for dependent component failures. The assumption of independence is flawed for most realistic engineering systems while the latter entails the painstaking and sometimes impossible task of deriving the joint survival function of the system components. This article, therefore, proposes a novel, generally applicable, and efficient Monte Carlo Simulation approach that allows the survival signature to be intuitively used for the reliability evaluation of systems susceptible to induced failures. Multiple component failure modes, as well, are considered, and sensitivities are analysed to identify the most critical common-cause group to the survivability of the system. Examples demonstrate the superiority of the approach.


Sign in / Sign up

Export Citation Format

Share Document