scholarly journals Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models

2019 ◽  
Vol 231 ◽  
pp. 111252 ◽  
Author(s):  
Martin Karlson ◽  
Magnus Gålfalk ◽  
Patrick Crill ◽  
Philippe Bousquet ◽  
Marielle Saunois ◽  
...  
2016 ◽  
Vol 4 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Jacques Bechet ◽  
Julien Duc ◽  
Alexandre Loye ◽  
Michel Jaboyedoff ◽  
Nicolle Mathys ◽  
...  

Abstract. The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion–deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to trigger significant erosion; they are above 9 mm rainfall or of an intensity of more than 1 mm min−1, values which can vary if antecedent precipitation is significant within the last 5 days.This study improves knowledge of the spatial distribution of erosion seasonality in badlands and demonstrates the potential of careful 3-D high-resolution topography using TLS to improve the understanding of erosive processes.


2020 ◽  
Author(s):  
Antti Sallinen ◽  
Justice Akanegbu ◽  
Hannu Marttila ◽  
Timo Kumpula ◽  
Teemu Tahvanainen

<p> <span>Patterned fens (aapa mires) are important part of boreal landscape. Their distribution is controlled by climate and local hydrological conditions. In order to assess the changes and stresses climate change and land use may cause in these ecosystems, we modelled the past and future hydrology of twelve aapa mires in different parts of Finland. The study area extends from the southern to northern boreal zone.<br><br>Mire catchments were delineated with the help of a digital elevation model. Wet minerotrophic areas (flarks) in the centers of aapa mires were traced from aerial images with numerical methods. Runoff modelling was done for the period 1962–2099 with a conceptual model ‘CPI snow’ using gridded temperature and precipitation data from historical weather records as well as predicted values based on climate scenarios.<br><br>The results clearly indicate changes in hydrological conditions of aapa mires. In particular, timing and volume of spring peak runoff after snowmelt are affected. It is probable that the changes influence aapa mire wetness, vegetation, and eventually survival and distribution. We search for evidence of these changes from remote sensing time series (Landsat) from 1980s to present. Possible implications of changes in northern peatlands include loss of biodiversity and changes in carbon cycle.</span></p>


10.1596/34445 ◽  
2020 ◽  
Author(s):  
Louise Croneborg ◽  
Keiko Saito ◽  
Michel Matera ◽  
Don McKeown ◽  
Jan van Aardt

Sign in / Sign up

Export Citation Format

Share Document