alpine environments
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 56)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Antoine Lucas ◽  
Eric Gayer

<div> <div> <div> <p>On the seasonal time scale, for accessible locations and when manpower is available, direct observations and field survey are the most useful and standard approaches. However very limited studies have been conducted on direct observation at the decennial to century time-scale due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (up to 70 yrs time span) that includes sensor calibration, dense matching and elevation reconstruction over two areas of interest that represent pristine examples for tropical and alpine environments. The Remparts Canyon and Langevin River in Reunion Island, and the Bossons glacier in the French Alps share a limited accessibility (in time and space) that can be overcome only from remote-sensing. We reach a metric to sub-metric resolution close to the nominal images spatial sampling. This provides elevation time series with a better resolution to most recent satellite images such as Pleiades over decennial time period. </p> </div> </div> </div>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Schano ◽  
Carole Niffenegger ◽  
Tobias Jonas ◽  
Fränzi Korner-Nievergelt

AbstractTo track peaks in resource abundance, temperate-zone animals use predictive environmental cues to rear their offspring when conditions are most favourable. However, climate change threatens the reliability of such cues when an animal and its resource respond differently to a changing environment. This is especially problematic in alpine environments, where climate warming exceeds the Holarctic trend and may thus lead to rapid asynchrony between peaks in resource abundance and periods of increased resource requirements such as reproductive period of high-alpine specialists. We therefore investigated interannual variation and long-term trends in the breeding phenology of a high-alpine specialist, the white-winged snowfinch, Montifringilla nivalis, using a 20-year dataset from Switzerland. We found that two thirds of broods hatched during snowmelt. Hatching dates positively correlated with April and May precipitation, but changes in mean hatching dates did not coincide with earlier snowmelt in recent years. Our results offer a potential explanation for recently observed population declines already recognisable at lower elevations. We discuss non-adaptive phenotypic plasticity as a potential cause for the asynchrony between changes in snowmelt and hatching dates of snowfinches, but the underlying causes are subject to further research.


2021 ◽  
Author(s):  
Antoine Lucas ◽  
Eric Gayer

<div> <div> <div> <p>On the seasonal time scale, for accessible locations and when manpower is available, direct observations and field survey are the most useful and standard approaches. However very limited studies have been conducted on direct observation at the decennial to century time-scale due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (up to 70 yrs time span) that includes sensor calibration, dense matching and elevation reconstruction over two areas of interest that represent pristine examples for tropical and alpine environments. The Remparts Canyon and Langevin River in Reunion Island, and the Bossons glacier in the French Alps share a limited accessibility (in time and space) that can be overcome only from remote-sensing. We reach a metric to sub-metric resolution close to the nominal images spatial sampling. This provides elevation time series with a better resolution to most recent satellite images such as Pleiades over decennial time period. </p> </div> </div> </div>


2021 ◽  
Vol 29 ◽  
pp. 249-257
Author(s):  
Troy Tetreault ◽  
Ken Aho

Exclosures are a common method for quantifying the effects of animal pollinators on flowering plant species. However, a lack of standardized designs or clear descriptions of previously implemented exclosure designs decreases replicability in pollination studies and reduces scientific rigor. We summarized previous descriptions of pollination exclosure designs, and developed/tested a novel exclosure design in alpine environments on the Beartooth Plateau in northern Wyoming, USA. This exclosure design consists of a cylindrical internal wire frame, integrated ground stakes, and various mesh materials attached to the exterior. Exclosures on the plateau showed high efficacy in inhibiting insects from pollinating flowering plants, and nearly all of these exclosures remained functional throughout the time they were in place. Our updated exclosure design is effective, inexpensive, easy to produce, and widely applicable across differing ecosystems and experimental design types.


2021 ◽  
Author(s):  
Antoine Lucas ◽  
Eric Gayer

<div> <div> <div> <p>On the seasonal time scale, for accessible locations and when manpower is available, direct observations and field survey are the most useful and standard approaches. However very limited studies have been conducted on direct observation at the decennial to century time-scale due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (up to 70 yrs time span) that includes sensor calibration, dense matching and elevation reconstruction over two areas of interest that represent pristine examples for tropical and alpine environments. The Remparts Canyon and Langevin River in Reunion Island, and the Bossons glacier in the French Alps share a limited accessibility (in time and space) that can be overcome only from remote-sensing. We reach a metric to sub-metric resolution close to the nominal images spatial sampling. This provides elevation time series with a better resolution to most recent satellite images such as Pleiades over decennial time period. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Antoine Lucas ◽  
Eric Gayer

<div> <div> <div> <p>On the seasonal time scale, for accessible locations and when manpower is available, direct observations and field survey are the most useful and standard approaches. However very limited studies have been conducted on direct observation at the decennial to century time-scale due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (up to 70 yrs time span) that includes sensor calibration, dense matching and elevation reconstruction over two areas of interest that represent pristine examples for tropical and alpine environments. The Remparts Canyon and Langevin River in Reunion Island, and the Bossons glacier in the French Alps share a limited accessibility (in time and space) that can be overcome only from remote-sensing. We reach a metric to sub-metric resolution close to the nominal images spatial sampling. This provides elevation time series with a better resolution to most recent satellite images such as Pleiades over decennial time period. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Antoine Lucas ◽  
Eric Gayer

<div> <div> <div> <p>On the seasonal time scale, for accessible locations and when manpower is available, direct observations and field survey are the most useful and standard approaches. However very limited studies have been conducted on direct observation at the decennial to century time-scale due to observational constrains. Here, we present an open and reproducible pipeline based on historical aerial images (up to 70 yrs time span) that includes sensor calibration, dense matching and elevation reconstruction over two areas of interest that represent pristine examples for tropical and alpine environments. The Remparts Canyon and Langevin River in Reunion Island, and the Bossons glacier in the French Alps share a limited accessibility (in time and space) that can be overcome only from remote-sensing. We reach a metric to sub-metric resolution close to the nominal images spatial sampling. This provides elevation time series with a better resolution to most recent satellite images such as Pleiades over decennial time period. </p> </div> </div> </div>


2021 ◽  
Vol 9 (4) ◽  
pp. 977-994
Author(s):  
Daniel Draebing

Abstract. In alpine environments, tectonic processes, past glaciation and weathering processes fracture rock and prepare or trigger rockfalls, which are important processes of rock slope evolution and natural hazards. In this study, I quantify thermally and ice-induced rock and fracture kinematics and place these in the context of their role in producing rockfall and climate change. I conducted laboratory measurements on intact rock samples and installed temperature loggers and crackmeters at four rockwalls reaching from 2585 to 2935 m in elevation in the Hungerli Valley, Swiss Alps. My laboratory data show that thermal expansion followed three phases of rock kinematics, which resulted in a hysteresis effect. In the field, control crackmeters on intact rock reflected these temperature phases, and based on thermal expansion coefficients of these observed phases, I modelled thermal stress. Model results show that thermal stress magnitudes were predominantly below rock strengths. Crackmeters across fractures revealed fracture opening during cooling and reverse closing behaviour during warming on daily timescales. Elevation-dependent snow cover controlled the number of daily temperature changes and thermal stresses affecting both intact and fractured rock, while the magnitude is controlled by topographic factors influencing insolation. On a seasonal scale, slow ice-segregation-induced fracture opening can occur within lithology-dependent temperature regimes called frost cracking windows. Shear plane dipping controlled whether fractures opened or closed irreversibly with time due to thermally induced block crawling on an annual scale. Climate change will shorten snow duration and increase temperature extremes and will, therefore, affect the number and the magnitude of thermal changes and associated stresses. Earlier snowmelt in combination with temperature increase will shift the ice-induced kinematic processes to higher elevations. In conclusion, climate change will affect and change rock and fracture kinematics and, therefore, change rockfall patterns in alpine environments. Future work should quantify rockfall patterns and link these patterns to climatic drivers.


Author(s):  
Elisa Giaccone ◽  
Fabio Oriani ◽  
Marj Tonini ◽  
Christophe Lambiel ◽  
Grégoire Mariéthoz

AbstractIn this paper, we compare the performance of two data-driven algorithms to deal with an automatic classification problem in geomorphology: Direct Sampling (DS) and Random Forest (RF). The main goal is to provide a semi-automated procedure for the geomorphological mapping of alpine environments, using a manually mapped zone as training dataset and predictor variables to infer the classification of a target zone. The applicability of DS to geomorphological classification was never investigated before. Instead, RF based classification has already been applied in few studies, but only with a limited number of geomorphological classes. The outcomes of both approaches are validated by comparing the eight detected classes with a geomorphological map elaborated on the field and considered as ground truth. Both DS and RF give satisfactory results and provide similar performances in term of accuracy and Cohen’s Kappa values. The map obtained with RF presents a noisier spatial distribution of classes than when using DS, because DS takes into account the spatial dependence of the different classes. Results suggest that DS and RF are both suitable techniques for the semi-automated geomorphological mapping in alpine environments at regional scale, opening the way for further improvements.


Sign in / Sign up

Export Citation Format

Share Document