A deep learning approach to retrieve cold-season snow depth over Arctic sea ice from AMSR2 measurements

2022 ◽  
Vol 269 ◽  
pp. 112840
Author(s):  
Haili Li ◽  
Chang-Qing Ke ◽  
Qinghui Zhu ◽  
Mengmeng Li ◽  
Xiaoyi Shen
2019 ◽  
Vol 11 (23) ◽  
pp. 2864 ◽  
Author(s):  
Jiping Liu ◽  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Yongyun Hu

The accurate knowledge of spatial and temporal variations of snow depth over sea ice in the Arctic basin is important for understanding the Arctic energy budget and retrieving sea ice thickness from satellite altimetry. In this study, we develop and validate a new method for retrieving snow depth over Arctic sea ice from brightness temperatures at different frequencies measured by passive microwave radiometers. We construct an ensemble-based deep neural network and use snow depth measured by sea ice mass balance buoys to train the network. First, the accuracy of the retrieved snow depth is validated with observations. The results show the derived snow depth is in good agreement with the observations, in terms of correlation, bias, root mean square error, and probability distribution. Our ensemble-based deep neural network can be used to extend the snow depth retrieval from first-year sea ice (FYI) to multi-year sea ice (MYI), as well as during the melting period. Second, the consistency and discrepancy of snow depth in the Arctic basin between our retrieval using the ensemble-based deep neural network and two other available retrievals using the empirical regression are examined. The results suggest that our snow depth retrieval outperforms these data sets.


2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Kangkang Jin ◽  
Jian Xu ◽  
Zichen Wang ◽  
Can Lu ◽  
Long Fan ◽  
...  

Warm current has a strong impact on the melting of sea ice, so clarifying the current features plays a very important role in the Arctic sea ice coverage forecasting study field. Currently, Arctic acoustic tomography is the only feasible method for the large-range current measurement under the Arctic sea ice. Furthermore, affected by the high latitudes Coriolis force, small-scale variability greatly affects the accuracy of Arctic acoustic tomography. However, small-scale variability could not be measured by empirical parameters and resolved by Regularized Least Squares (RLS) in the inverse problem of Arctic acoustic tomography. In this paper, the convolutional neural network (CNN) is proposed to enhance the prediction accuracy in the Arctic, and especially, Gaussian noise is added to reflect the disturbance of the Arctic environment. First, we use the finite element method to build the background ocean model. Then, the deep learning CNN method constructs the non-linear mapping relationship between the acoustic data and the corresponding flow velocity. Finally, the simulation result shows that the deep learning convolutional neural network method being applied to Arctic acoustic tomography could achieve 45.87% accurate improvement than the common RLS method in the current inversion.


2012 ◽  
Vol 39 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. J. Hezel ◽  
X. Zhang ◽  
C. M. Bitz ◽  
B. P. Kelly ◽  
F. Massonnet

2018 ◽  
Vol 123 (10) ◽  
pp. 7120-7138 ◽  
Author(s):  
Philip Rostosky ◽  
Gunnar Spreen ◽  
Sinead L. Farrell ◽  
Torben Frost ◽  
Georg Heygster ◽  
...  

2020 ◽  
Author(s):  
Tingfeng Dou

<p>Snow plays an important role in the Arctic climate system, modulating heat transfer in terrestrial and marine environments and controlling feedbacks. Changes in snow depth over Arctic sea ice, particularly in spring, have a strong impact on the surface energy budget, influencing ocean heat loss, ice growth and surface ponding. Snow conditions are sensitive to the phase (solid or liquid) of deposited precipitation. However, variability and potential trends of rain-on snow events over Arctic sea ice and their role in sea-ice losses are poorly understood. Time series of surface observations at Utqiagvik, Alaska, reveal rapid reduction in snow depth linked to late-spring rain-on-snow events. Liquid precipitation is critical in preconditioning and triggering snow ablation through reduction in surface albedo as well as latent heat release determined by rainfall amount, supported by field observations beginning in 2000 and model results. Rainfall was found to accelerate warming and ripening of the snowpack, with even small amounts (such as 0.3mm recorded on 24 May 2017) triggering the transition from the warming phase into the ripening phase. Subsequently, direct heat input drives snowmelt, with water content of the snowpack increasing until meltwater output occurs, with an associated rapid decrease in snow depth. Rainfall during the ripening phase can further raise water content in the snow layer, prompting onset of the meltwater output phase in the snowpack. First spring rainfall in Utqiagvik has been observed to shift to earlier dates since the 1970s, in particular after the mid-1990s. Early melt season rainfall and its fraction of total annual precipitation also exhibit an increasing trend. These changes of precipitation over sea ice may have profound impacts on ice melt through feedbacks involving earlier onset of surface melt.</p>


2017 ◽  
Author(s):  
Ron Kwok ◽  
Nathan T. Kurtz ◽  
Ludovic Brucker ◽  
Alvaro Ivanoff ◽  
Thomas Newman ◽  
...  

Abstract. Since 2009, the ultra-wideband snow-radar on Operation IceBridge has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow and snow-ice interfaces are detected and localized in the radar returns, and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affect snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine Ozone Mercury EXperiment (BROMEX) at Barrow, Alaska and a field program by Environment and Climate Change Canada (ECCC) at Eureka, Nunavut, available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.


2018 ◽  
Vol 12 (11) ◽  
pp. 3551-3564 ◽  
Author(s):  
Isobel R. Lawrence ◽  
Michel C. Tsamados ◽  
Julienne C. Stroeve ◽  
Thomas W. K. Armitage ◽  
Andy L. Ridout

Abstract. Snow depth on sea ice remains one of the largest uncertainties in sea ice thickness retrievals from satellite altimetry. Here we outline an approach for deriving snow depth that can be applied to any coincident freeboard measurements after calibration with independent observations of snow and ice freeboard. Freeboard estimates from CryoSat-2 (Ku band) and AltiKa (Ka band) are calibrated against data from NASA's Operation IceBridge (OIB) to align AltiKa with the snow surface and CryoSat-2 with the ice–snow interface. Snow depth is found as the difference between the two calibrated freeboards, with a correction added for the slower speed of light propagation through snow. We perform an initial evaluation of our derived snow depth product against OIB snow depth data by excluding successive years of OIB data from the analysis. We find a root-mean-square deviation of 7.7, 5.3, 5.9, and 6.7 cm between our snow thickness product and OIB data from the springs of 2013, 2014, 2015, and 2016 respectively. We further demonstrate the applicability of the method to ICESat and Envisat, offering promising potential for the application to CryoSat-2 and ICESat-2, which launched in September 2018.


Sign in / Sign up

Export Citation Format

Share Document