Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach

2018 ◽  
Vol 610-611 ◽  
pp. 831-844 ◽  
Author(s):  
Felaniaina Rakotondrabe ◽  
Jules Remy Ndam Ngoupayou ◽  
Zakari Mfonka ◽  
Eddy Harilala Rasolomanana ◽  
Alexis Jacob Nyangono Abolo ◽  
...  
2009 ◽  
Vol 44 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Ozan Arslan

Abstract The study offers a GIS-based multivariate statistical analysis strategy to assess river water quality. Multivariate statistical methods and Geographic Information System (GIS) technology have effectively been used for water quality management. Recognizing the fact that the use of standard statistical methods can be restrictive due to the complexity of water quality datasets, geospatial statistical methods have been recommended for the water quality assessment. The objective of the study was to explore the potential capabilities of GIS-based joint multivariate statistical analysis for water quality assessment of Porsuk River in Turkey. A well-known multivariate statistical technique, principal component analysis (PCA), is incorporated into a geographic database for interpretation of water quality data. To characterize spatial variability of water quality data, spatial PCA was performed on the basis of spatial autocorrelation. Application of the joint spatio-multivariate statistical analysis for interpretation of the water quality database offered a better understanding of the hydrochemistry in the study region.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mansoor A. Baluch ◽  
Hashim Nisar Hashmi

Water quality of the Indus River around the upper basin and the main river was evaluated with the help of statistical analysis. In order to analyze the similarities and dissimilarities for identifying the spatial variations in water quality of the Indus River and sources of contamination, multivariate statistical analysis, i.e., principle component analysis (PCA), cluster analysis, and descriptive analysis, was done. Data of 8 physicochemical quality parameters from 64 sampling stations belonging to 6 regions (labeled as M1, M2, M3, M4, M5, and M6) were used for analysis. The parameters used for assessing the water quality were pH, dissolved oxygen (DO), oxygen reducing potential (ORP), electrical conductivity (EC), total dissolved solids (TDS), salinity (%), and concentration of arsenic (As) and lead (Pb), respectively. PCA assisted in extracting and recognizing the responsible variation factors of water quality over the region, and the results showed three underlying factors including anthropogenic source pollution along with runoff due to rain and soil erosion were responsible for explaining the 93.87% of total variance. The parameters which were significantly influenced by anthropogenic impact are DO, EC, TDS (negative), and concentration of Pb (positive), while the concentration of As, % salinity, and ORP are affected by erosion and runoff due to rain. The worst pollution situation for regions M1 and M6 was due to the concentration of As which was approximately 400 μg/l (i.e., 40 times higher than minimum WHO recommendation). Furthermore, the results also indicated that, in the Indus River, three monitoring stations and five quality parameters are sufficient to have a reasonable confidence about the quality of water in this most important reserve of Pakistan.


Sign in / Sign up

Export Citation Format

Share Document