Estimation of anthropogenic heat flux and its coupling analysis with urban building characteristics – A case study of typical cities in the Yangtze River Delta, China

2021 ◽  
Vol 774 ◽  
pp. 145805 ◽  
Author(s):  
Chen Yu ◽  
Deyong Hu ◽  
Shasha Wang ◽  
Shanshan Chen ◽  
Yichen Wang
2012 ◽  
Vol 25 (20) ◽  
pp. 7187-7203 ◽  
Author(s):  
Jin-Ming Feng ◽  
Yong-Li Wang ◽  
Zhu-Guo Ma ◽  
Yong-He Liu

Abstract Together with economic development and accelerated urbanization, the urban population in China has been increasing rapidly, and anthropogenic heat released by large-scale energy consumption in cities is expected to be a vital factor affecting the climate. In this paper, the Weather Research and Forecasting (WRF) model coupled with the Urban Canopy Model (UCM) is employed to simulate the regional impacts on climate under the two scenarios: the underlying surface changes due to urbanization (USCU) and anthropogenic heat release (AHR). Three experiments were performed from December 2006 to December 2008. With respect to the USCU, the surface albedo and the available surface soil water decrease markedly. With the inclusion of AHR, the two scenarios give rise to increased surface temperatures over most areas of China. Especially in the urban agglomeration area of the Yangtze River delta, the combination of USCU and AHR could result in an increase of 2°C in the surface air temperature. The influence of AHR on surface air temperature in winter is greater than the influence of USCU without considering any extra sources of heat, but the opposite is found in summer. The combination of USCU and AHR leads to changes in the surface energy budget. They both increase sensible heat flux, but USCU decreases latent heat flux significantly, and AHR increases latent heat flux slightly. Nevertheless, under the influence of these two scenarios, the precipitation increases in some areas, especially in the Beijing–Tianjin–Hebei region, while it decreases in other areas, most notably the Yangtze River delta.


2016 ◽  
Vol 16 (10) ◽  
pp. 6071-6089 ◽  
Author(s):  
Min Xie ◽  
Jingbiao Liao ◽  
Tijian Wang ◽  
Kuanguang Zhu ◽  
Bingliang Zhuang ◽  
...  

Abstract. Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2, respectively, with the high value of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum changes of 2.5 ppb in January and 4 ppb in July. Chemical direct (the rising up of air temperature directly accelerates surface O3 formation) and indirect (the decrease in NOx at the ground results in the increase in surface O3) effects can play a significant role in O3 changes over this region. The meteorology and air pollution predictions in and around large urban areas are highly sensitive to the anthropogenic heat inputs, suggesting that AH should be considered in the climate and air quality assessments.


Sign in / Sign up

Export Citation Format

Share Document