the yrd
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 89)

H-INDEX

21
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 310
Author(s):  
Qi Wu ◽  
Shiqi Miao ◽  
Haili Huang ◽  
Mao Guo ◽  
Lei Zhang ◽  
...  

The coastline situation reflects socioeconomic development and ecological environment in coastal zones. Analyzing coastline changes clarifies the current coastline situation and provides a scientific basis for making environmental protection policies, especially for coastlines with significant human interference. As human activities become more intense, coastline types and their dynamic changes become more complicated, which needs more detailed identification of coastlines. High spatial resolution images can help provide detailed large spatial coverage at high resolution information on coastal zones. This study aims to map the position and status of the Yangtze River Delta (YRD) coastline using an NDWI threshold method based on 2 m Gaofen-1/Ziyuan-3 imagery and analyze coastline change and coastline type distribution characteristics. The results showed that natural and artificial coastlines in the YRD region accounted for 42.73% and 57.27% in 2013 and 41.56% and 58.44% in 2018, respectively. The coastline generally advanced towards the sea, causing a land area increase of 475.62 km2. The changes in the YRD coastline mainly resulted from a combination of large-scale artificial construction and natural factors such as silt deposition. This study provides a reference source for large spatial coverage at high resolution remote sensing coastline monitoring and a better understanding of land use in coastal zone.


2022 ◽  
Author(s):  
Hao Yin ◽  
Youwen Sun ◽  
Justus Notholt ◽  
Mathias Palm ◽  
Cheng Liu

Abstract. Nitrogen dioxide (NO2) is mainly affected by local emission and meteorology rather than long-range transport. Accurate acknowledge of its long-term variabilities and drivers are significant for understanding the evolutions of economic and social development, anthropogenic emission, and the effectiveness of pollution control measures on regional scale. In this study, we quantity the long-term variabilities and the underlying drivers of NO2 from 2005 to 2020 over the Yangtze River Delta (YRD), one of the most densely populated and highly industrialized city clusters in China, using OMI space borne observations and the multiple linear regression (MLR) model. We have compared the space borne tropospheric results to the surface in-situ data, yielding correlation coefficients of 0.8 to 0.9 over all megacities within the YRD. As a result, the tropospheric NO2 column measurements can be used as representatives of near-surface conditions, and we thus only use ground-level meteorological data for MLR regression. The inter-annual variabilities of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2020 over the YRD can be divided into two stages. The first stage was from 2005 to 2011, which showed overall increasing trends with a wide range of (1.91 ± 1.50) to (6.70 ± 0.10) × 1014 molecules/cm2·yr−1 (p < 0.01) over the YRD. The second stage was from 2011 to 2020, which showed over all decreasing trends of (−6.31 ± 0.71) to (−11.01 ± 0.90) × 1014 molecules/cm2·yr−1 (p < 0.01) over each of the megacities. The seasonal cycles of tropospheric NO2 VCDs over the YRD are mainly driven by meteorology (81.01 % – 83.91 %) except during winter when anthropogenic emission contributions are pronounced (16.09 % – 18.99 %). The inter annual variabilities of tropospheric NO2 VCDs are mainly driven by anthropogenic emission (69.18 % – 81.34 %) except for a few years such as 2018 which are partly attributed to meteorology anomalies (39.07 % – 91.51 %). The increasing trends in tropospheric NO2 VCDs from 2005 to 2011 over the YRD are mainly attributed to high energy consumption associated with rapid economic growth which cause significant increases in anthropogenic NO2 emissions. The decreasing trends in tropospheric NO2 VCDs from 2011 to 2020 over the YRD are mainly attributed to the stringent clean air measures which either adjust high energy industrial structure toward low energy industrial structure or directly reduce pollutant emissions from different industrial sectors.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Jie Zhao ◽  
Cheng Li

A comprehensive understanding of the ecosystem services (ESs) trade-off/synergy relationships has become increasingly important for ecological management and sustainable development. This study employed the Yangtze River Delta (YRD) region in China as the study area and investigated the spatiotemporal changes in three ESs, namely, carbon storage (CS), water purification (WP), and habitat quality (HQ). A trade-off/synergy degree (TSD) indicator was developed that allowed for the quantification of the trade-off/synergy intensity, and the spatial pattern of the TSD between ESs in the YRD region to be analyzed. Furthermore, a geographically weighted regression (GWR) model was used to analyze the relationship between the influencing factors and trade-offs/synergies. The results revealed that CS, WP, and HQ decreased by 0.28%, 2.49%, and 3.38%, respectively, from 2005 to 2015. The TSD indicator showed that the trade-off/synergy relationships and their magnitudes were spatially heterogeneous throughout the YRD region. The coefficients of the natural and socioeconomic factors obtained from the GWR indicated that their impacts on the trade-offs/synergies vary spatiotemporally. The impact factors had both positive and negative effects on the trade-offs/synergies. The findings of this study could improve the understanding of the spatiotemporal dynamics of trade-offs/synergies and their spatially heterogeneous correlations with related factors.


Author(s):  
Mingyue Zhao ◽  
Yuanxin Liu ◽  
Amatus Gyilbag

The 2019 novel coronavirus disease (COVID-19) has become a severe public health and social problem worldwide. A limitation of the existing literature is that multiple environmental variables have not been frequently elaborated, which is why the overall effect of the environment on COVID-19 has not been conclusive. In this study, we used generalized additive model (GAM) to detect the relationship between meteorological and air pollution variables and COVID-19 in four urban agglomerations in China and made comparisons among the urban agglomerations. The four urban agglomerations are Beijing-Tianjin-Hebei (BTH), middle reaches of the Yangtze River (MYR), Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The daily rates of average precipitation, temperature, relative humidity, sunshine duration, and atmospheric pressure were selected as meteorological variables. The PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) contents were selected as air pollution variables. The results indicated that meteorological and air pollution variables tended to be significantly correlated. Moreover, the nature of the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and meteorological and air pollution variables (i.e., linear or nonlinear) varied with urban agglomerations. Among the variance explained by GAMs, BTH had the highest value (75.4%), while MYR had the lowest value (35.2%). The values of the YRD and PRD were between the above two, namely 45.6% and 62.2%, respectively. The findings showed that the association between SARS-CoV-2 and meteorological and air pollution variables varied in regions, making it difficult to obtain a relationship that is applicable to every region. Moreover, this study enriches our understanding of SARS-CoV-2. It is required to create awareness within the government that anti-COVID-19 measures should be adapted to the local meteorological and air pollution conditions.


2021 ◽  
Vol 16 (8) ◽  
pp. 1455-1464
Author(s):  
Jialei Cao ◽  
Chenran Ge

High-quality economic development (HQED) has recently become a crucial sustainable growth mode in China, which pursues economic growth while maintaining social equity and green ecology. The HQED of the Yangtze River Delta (YRD) has played an exemplary role in achieving the leap from “China speed” to “China Quality”. In this paper, we first use the entropy-weight multidimensional comprehensive evaluation method to calculate the HQED index as a proxy for the quality of economic growth. Then, using panel data of 41 cities in the YRD, we conduct a comparative study to examine impacts of technological innovation (TI) on quantity and quality of economic growth by employing different panel estimation models over the period 2009-2019 and check the robustness in five ways. Finally, this paper investigates the TI-economic growth link based on the panel quantile regression across the conditional distributions of economic growth levels. Results show that TI has significantly positive effects in terms of both quantity and quality of economic growth, and the promoting effect on the quantity of economic growth is almost four times higher than that of quality under mean estimations by double fixed-effects. The effect on quantity of economic growth is also stronger than that of quality under the conditional distribution, and TI has a stronger impact for regions with higher levels of economic growth.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Zhen Li ◽  
Shaocai Yu ◽  
Mengying Li ◽  
Xue Chen ◽  
Yibo Zhang ◽  
...  

The Chinese government has made great efforts to combat air pollution through the reductions in SO2, NOx and VOCs emissions, as part of its socioeconomic Five-Year Plans (FYPs). China aims to further reduce the emissions of VOCs and NOx by 10% in its upcoming 14th FYP (2021–2025). Here, we used a regional chemical transport model (e.g., WRF/CMAQ) to examine the responses of PM2.5 and O3 to emission control policies of the 14th FYP in the Yangtze River Delta (YRD) region. The simulation results under the 4 emission control scenarios in the 2 winter months in 2025 indicate that the average concentrations of city mean PM2.5 in 41 cities in the YRD were predicted to only decrease by 10% under both S1 and S1_E scenarios, whereas the enhanced emission control scenarios (i.e., S2_E and S3_E) could reduce PM2.5 in each city by more than 20%. The model simulation results for O3 in the 3 summer months in 2025 show that the O3 responses to the emission controls under the S1 and S1_E scenarios show different control effects on O3 concentrations in the YRD with the increase and decrease effects, respectively. The study found that both enhanced emission control scenarios (S2_E and S3_E) could decrease O3 in each city by more than 20% with more reductions in O3 under the S3_E emission control scenario because of its higher control strengths for both NOx and VOCs emissions. It was found that emission reduction policies for controlling high emission sectors of NOx and VOCs such as S2_E and S3_E were more effective for decreasing both PM2.5 and O3 in the YRD. This study shows that O3 controls will benefit from well-designed air pollution control strategies for reasonable control ratios of NOx and VOCs emissions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jieying Yang ◽  
Jingxiang Zhang ◽  
Jiayi Lu ◽  
Dongqi Sun

Metropolitan areas are important for engaging in fierce global competition. Cities in metropolitan areas in China are generally characterized by a core-periphery structure. The Yangtze River Delta metropolitan area (YRD) is a national strategic region in which Shanghai, as a central city, drives the economic growth of hinterland cities. Exploring the spatiotemporal characteristics and influencing factors between the central city and its hinterland cities in the YRD can provide a basis for promoting regional development. Based on the headquarters-branches and enterprise investment data from 1978 to 2019, this study analyzes the spatiotemporal characteristics and influencing factors of enterprise linkages between Shanghai and its hinterland cities in the YRD. Our results reveal the following: (1) the headquarters-branch linkages between Shanghai and its hinterland cities manifest polarization characteristics, with different polarized characteristics among the three provinces; (2) the enterprise investment linkages between Shanghai and its hinterland cities are getting closer, but the key cities for investment in each province are different; (3) economic strength is a core factor that affects whether Shanghai establishes enterprise branches in its hinterland cities; and (4) the enterprise investment linkages between Shanghai and its hinterland cities depend on whether a city has a comparative advantage.


Author(s):  
Jia Li ◽  
Decai Tang ◽  
Acheampong Paul Tenkorang ◽  
Zhuoran Shi

This paper employs the global Malmquist Luenberger (GML) index and the System Generalized method of moments (GMM) estimation method to investigate the influence of both environmental regulation and financial development on green total factor productivity in 41 cities of the Yangtze River Delta (YRD) in China from 2003–2019. We select the relevant input-output data to measure the green total factor productivity (GTFP) and its decomposition index including undesirable output. The results show that the GTFP and its decomposition index in the YRD have a slow fluctuating upward trend. The YRD mainly depends on improving the level of technological progress and environmental governance to promote the improvement of regional economic green development level. The empirical research results show that there is an inverted U relationship between environmental regulation and GTFP in the YRD, too strict environmental regulation will inhibit the growth of green total factor productivity. By adding control variables, the inflection point of environmental regulation is 0.5034, which is lower than that without control variables. There is a strong interaction and superposition effect between financial development and environmental regulation, which is closely related to the established financial cooperation mechanism, perfect financial system arrangement and cross-regional financial cooperation platform in the YRD. Government intervention should be reduced, the introduction of foreign capital should be controlled appropriately, foreign capital should be guided to green industries, and the use efficiency of foreign capital should be improved. This paper holds that we should pay attention to the strength of environmental regulation, prevent overcorrection, increase the guidance of credit funds, deepen the reform of the financial system, appropriately intervene in the market by the government, strengthen the guidance of foreign capital, and promote the development and transformation of the green economy in the YRD region with the help of several policies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Min Xie ◽  
Chenchao Zhan ◽  
Yangzhihao Zhan ◽  
Jie Shi ◽  
Yi Luo ◽  
...  

This paper investigates the spatiotemporal variability of air stagnation in summer as well as its relation to summer ozone (O3) over the Yangtze River Delta (YRD) region of China. Air stagnation days (ASDs) in the YRD during the summers from 2001 to 2017 range from 9 to 54 days (9.2–58.4% of the entire summer days). With the empirical orthogonal function (EOF) analysis, the dominant weather systems affecting air stagnation in the YRD are illustrated. The first three EOFs explain 68.8, 11.3, and 7.1% of the total variance of ASDs, respectively. The first EOF represents the same phase of the entire YRD, which is attributed to the East Asian summer monsoon and mainly depends on the area and the intensity of the South China Sea subtropical high. The second EOF shows significant maritime-continental contrasts, which is related to stronger near-surface winds on sea. As for the third EOF, the air stagnation in the north and the south of the YRD has the opposite phase, with a dividing line along approximately 31°N. This spatial pattern depends on the area and the intensity of the northern hemisphere polar vortex that affects the meridional circulation. O3 is the typical air pollutant in hot seasons in the YRD. It is generally at a high pollution level in summer, and has a positive trend from 2013 to 2017. Air stagnation can affect O3 pollution levels in the YRD. In ASDs, there are usually weak wind, less precipitation, low relative humidity, high temperature, strong solar radiation and high surface pressure, which are favorable to the formation of O3. More O3 pollution episodes in 2013 than 2015 can be partly attributed to more ASDs in 2013. These results show that stagnant meteorological state can lead to the hazardous air quality, and provide valuable insight into the effect of air stagnation on the changes in surface O3 during hot months.


2021 ◽  
Vol 13 (21) ◽  
pp. 4322
Author(s):  
Yingchun Bian ◽  
Ying Zhao ◽  
Heng Lyu ◽  
Fei Guo ◽  
Yunmei Li ◽  
...  

The Yangtze River Delta (YRD) is one of the regions with the most intensive human activities. The eutrophication of lakes in this area is becoming increasingly serious with consequent negative impacts on the water supply of the surrounding cities. But the spatial-temporal characteristics and driving factors of the trophic state of the lake in this region are still not clearly addressed. In this study, a semi-analytical algorithm for estimating the trophic index (TSI) using particle absorption at 645 nm based on MODIS images is proposed to monitor and evaluate the trophic state of 41 large lakes (larger than 10 km2) in the YRD from 2002 to 2020. The performance of the proposed algorithm is evaluated using an independent dataset. Results showed that the root-mean-square error (RMSE) of the algorithm is less than 6 and the mean absolute percentage error (MAPE) does not exceed 8%, indicating that it can be applied for remotely deriving the TSI in the YRD. The spatial-temporal patterns revealed that there were significantly more lakes with moderate eutrophication in the Lower Yangtze River (LYR) than in the Lower Huaihe River (LHR). The overall average value of the TSI reaches a maximum in summer and a minimum in winter. The TSI value in the YRD over the period 2002–2020 showed a downward trend, especially after 2013. Individually, 33 lakes showed a downward trend and 8 lakes showed an upward trend. Furthermore, marked seasonal and interannual temporal variations can be clearly observed in the LYR and LHR and the sum of the variance contributions of seasonal and interannual components is more than 50%. Multiple linear regression analysis showed that human activities can explain 65% of the variation in the lake TSI in the YRD.


Sign in / Sign up

Export Citation Format

Share Document