ecosystem management
Recently Published Documents


TOTAL DOCUMENTS

1142
(FIVE YEARS 149)

H-INDEX

64
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Taiwo Ogunwumi ◽  
Margarethe-Elizabeth Graves Armstrong

Abstract Blue carbon ecosystems (BCEs), such as wetlands, marshes, mangroves, and seagrasses, warrant increased attention for their abilities to protect life, property, and environments locally and globally. BCEs serve as both buffers reducing coastal hazards and carbon sinks storing ‘blue’ carbon in aquatic plant life and soils. While research exists on BCE functions and benefits, their global diversity necessitates a collection of localized research investigating the unique dynamics and histories of distinct BCEs. The historic degradation of coastal ecosystems proves the need for purposeful, well-informed, sustainable ecosystem management to conserve and restore BCEs. We conducted a systematic literature review to understand the existing body of research on synergies between BCEs and ecosystem-based disaster risk reduction (Eco-DRR). We investigated how prior research employed various research methods, discussed key aspects of sustainable land management, and considered geographic locations and scales. We discovered localized case studies have incredible insights on the efficacy of BCEs along with context-specific strategies for sustainable ecosystem management. However, as these case studies are not plentiful and are concentrated in North America and Asia, they do not account for the diversity of BCEs. We suggest increased support for localized research on the benefits and implementation of BCEs as Eco-DRR measures.


2022 ◽  
pp. 1873-1889
Author(s):  
Joan Mwihaki Nyika

Ecosystems are part of human wellbeing and their sustainable management is essential for the survival of the human race and biodiversity. This chapter explores the concept of sustainable ecosystem management (SEM), its principles, elements, faces, and implementation. SEM is defined as environmentally sensitive, ecosystem-based, and eco-regional based. Its successful implementation is therefore complex due to the different priorities of stakeholders, the scope of ecosystems, some of which are transboundary, and the ever-changing nature of these areas amidst environmental uncertainties. These aspects are vulnerable to political changes and reconciling them is difficult. This chapter proposes a five-step implementation plan on SEM that is pegged on adaptive management and holistic consideration of ecological resources. Using documented case studies, SEM is a proposed solution to ecosystem challenges of modern-day amidst hindrances of rising resource demand, population increase, and climate variability.


2021 ◽  
Author(s):  
Elgars Felcis ◽  

Scientific evidence is robust about the environmentally destructive side-effects of the current industrial civilization and that requires radical actions to safeguard sustainable management of natural resources and liveable Planet Earth. Agroecology as a broader movement serves some of this role in demonstrating alternative practices in food production and ecosystem management. This paper demonstrates that the permaculture movement in Latvia is developing as a recognized alternative on the pathway to solutions, linking to the work elsewhere done on management of common natural resources – the things that no one owns and are shared by everyone. The author have explored the development of the permaculture movement in Latvia since its first roots in the late 2000s and the establishment of the Latvian Permaculture Association (LPA) in 2011. The contribution of the movement manifests itself in diverse aspects. It unifies various sustainability-oriented people, grounds itself in locality and traditions, organises practically oriented events to upskill people, and collaborates with Latvian environmental organisations and internationally. Within the research the author consciously opted for an in-depth involvement and co-creation of initiatives within the permaculture movement, leading the LPA since 2016 and organizing multiple events and workshops. That leads to further reflections on the role and necessity for participatory action research for sustainability transformations and common natural resources.


2021 ◽  
Author(s):  
Taiwo Seun Ogunwumi ◽  
Margarethe-Elizabeth Graves Armstrong

Abstract Blue carbon ecosystems (BCEs), such as wetlands, marshes, mangroves, and seagrasses, warrant increased attention for their abilities to protect life, property, and environments locally and globally. BCEs serve as both buffers reducing coastal hazards and carbon sinks storing ‘blue’ carbon in aquatic plant life and soils. While research exists on BCE functions and benefits, their global diversity necessitates a collection of localized research investigating the unique dynamics and histories of distinct BCEs. The historic degradation of coastal ecosystems proves the need for purposeful, well-informed, sustainable ecosystem management to conserve and restore BCEs. We conducted a systematic literature review to understand the existing body of research on synergies between BCEs and ecosystem-based disaster risk reduction (Eco-DRR). We investigated how prior research employed various research methods, discussed key aspects of sustainable land management, and considered geographic locations and scales. We discovered localized case studies have incredible insights on the efficacy of BCEs along with context-specific strategies for sustainable ecosystem management. However, as these case studies are not plentiful and are concentrated in North America and Asia, they do not account for the diversity of BCEs. We suggest increased support for localized research on the benefits and implementation of BCEs as Eco-DRR measures.


2021 ◽  
Vol 18 (2) ◽  
pp. 105-124
Author(s):  
Abiyyu Muhammad Haris ◽  
Hartrisari Hardjomidjojo ◽  
Cecep Kusmana Kusmana

Mangrove ecosystems provide various useful types of products and services to support the life needs of coastal communities. In the management of sustainable mangrove ecosystems, it is necessary to integrate activities in the ecological, economic, and social dimensions as it is known in the concept of sustainable development. This study aims to measure the sustainability status of mangrove ecosystem management in Tarumajaya District, Bekasi Regency. Data analysis is applying RAPFISH with the multidimensional scaling (MDS) method. The results show that the sustainability status of mangrove ecosystem management in Tarumajaya District, Bekasi Regency, obtains a multidimensional index value of 45.79% with less sustainable status, index value; and the sustainability status in each dimension, is 21.72% for the ecological dimension (unsustainable), 49.15% for economic dimension (less sustainable), 40.68 % for social dimension (less sustainable), and 63.68% for institutional dimension (quite sustainable). The influencing factors for the sustainability of mangrove ecosystem management consist of 16 indicators from the 4 dimensions tested. The results of statistical parameter validation and the results of the Monte Carlo test show that all of the dimension indicators analyzed in the management of sustainability of mangrove ecosystems have a significant role in explaining the diversity of mangrove ecosystems dimensional index value and have a high level of confidence.


Author(s):  
Andreas Mölder ◽  
Malin Tiebel ◽  
Tobias Plieninger

Abstract Purpose of Review Ownership patterns and the associated management characteristics are related to forest structures, biodiversity patterns, and their conservation worldwide. A literature review on this topic is missing so far. We fill this gap with an emphasis on the temperate forests of Europe and North America. Mixed-ownership landscapes are the special focus of the analysis. In a first step, historical effects of ownership patterns on forest structure and biodiversity are elucidated. Second, connections between present-time forest ownership patterns and both forest structural and biodiversity patterns are analyzed. Finally, implications for integrative conservation management are evaluated with a special focus on mixed-ownership forest landscapes. Recent Findings Close linkages between ownership type-specific forest management and particular forest structural and biodiversity patterns are identified for past and current forest landscapes. Both in Europe and North America, publicly and privately owned forests show comparable lines of historical development but with a time shift. Forest reserves and ancient woodland with long ecological continuity appear to be mainly connected with public ownership. A high diversity of management approaches and cultural landscape habitats is characteristic of non-industrial small private forests. In mixed-ownership landscapes, a more diverse mosaic of habitats has developed than in mono-ownership landscapes. Summary We conclude that cross-boundary ecosystem management is crucial for effective conservation in present-day mixed-ownership landscapes. Integrative forest management that considers biodiversity and social-ecological aspects across ownerships is indispensable. We present a framework of implications for conservation management in mixed-ownership forest landscapes that build on each other and may enhance cross-boundary ecosystem management.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3305
Author(s):  
Li Ji ◽  
Yuan Li ◽  
Guixiang Zhang ◽  
Yonghong Bi

The earth has been reshaped for millennia. The accelerating pace of anthropogenic activities has generated enormous impacts on the water environment. As one of the main drivers of landscape change, anthropogenic disturbance has brought many negative effects on rivers. Studying the relationship between anthropogenic disturbances and river water quality is of significance for regional conservation and ecosystem management, while the relationship remains poorly understood in the current. In this study, we quantified anthropogenic disturbances by introducing the concept of the hemeroby index and evaluated rivers’ water quality in eight sub-watersheds on the Loess Plateau. The results indicated that 37.5% of the sub-watersheds were in Eutrophic status, and 62.5% were in Marginal water quality index. The river water quality was most poor in the southwestern region near the Yellow River with high-level anthropogenic disturbance. A correlation analysis between water quality indicators and hemeroby suggested that anthropogenic disturbance contributed to a significant water quality deterioration trend (p < 0.01). The river water quality was relatively sensitive to the changes of completely disturbed land-use covers, including urban and industrial land. Our findings provide theoretical guidance for regional water resources conservation and ecosystem management in arid areas.


2021 ◽  
Vol 13 (22) ◽  
pp. 4671
Author(s):  
Bing Lu ◽  
Yuhong He

Chlorophyll is an essential vegetation pigment influencing plant photosynthesis rate and growth conditions. Remote sensing images have been widely used for mapping vegetation chlorophyll content in different ecosystems (e.g., farmlands, forests, grasslands, and wetlands) for evaluating vegetation growth status and productivity of these ecosystems. Compared to farmlands and forests that are more homogeneous in terms of species composition, grasslands and wetlands are more heterogeneous with highly mixed species (e.g., various grass, forb, and shrub species). Different species contribute differently to the ecosystem services, thus, monitoring species-specific chlorophyll content is critical for better understanding their growth status, evaluating ecosystem functions, and supporting ecosystem management (e.g., control invasive species). However, previous studies in mapping chlorophyll content in heterogeneous ecosystems have rarely estimated species-specific chlorophyll content, which was partially due to the limited spatial resolution of remote sensing images commonly used in the past few decades for recognizing different species. In addition, many previous studies have used one universal model built with data of all species for mapping chlorophyll of the entire study area, which did not fully consider the impacts of species composition on the accuracy of chlorophyll estimation (i.e., establishing species-specific chlorophyll estimation models may generate higher accuracy). In this study, helicopter-acquired high-spatial resolution hyperspectral images were acquired for species classification and species-specific chlorophyll content estimation. Four estimation models, including a universal linear regression (LR) model (i.e., built with data of all species), species-specific LR models (i.e., built with data of each species, respectively), a universal random forest regression (RFR) model, and species-specific RFR models, were compared to determine their performance in mapping chlorophyll and to evaluate the impacts of species composition. The results show that species-specific models performed better than the universal models, especially for species with fewer samples in the dataset. The best performed species-specific models were then used to generate species-specific chlorophyll content maps using the species classification results. Impacts of species composition on the retrieval of chlorophyll content were further assessed to support future chlorophyll mapping in heterogeneous ecosystems and ecosystem management.


2021 ◽  
Vol 27 (10) ◽  
pp. 751-765
Author(s):  
V. V. Glukhov ◽  
A. V. Babkin ◽  
E. V. Shkarupeta ◽  
V. A. Plotnikov

Aim. The presented study aims to develop a structural model for industrial ecosystem management and to propose strategies for the industrial ecosystem orchestrator.Tasks. The authors systematize the landscape of existing research in the field of ecosystems; identify the problem and determine the research gap; develop the concept of ecosystem entity; determine the specific features of industrial ecosystem management; develop a structural model for industrial ecosystem management based on the platform concept; recommend strategies for the industrial ecosystem orchestrator.Methods. This study uses general scientific methods (synthesis, generalization, content analysis, graphical data interpretation), economic and statistical methods (correlation and regression analysis, mathematical statistics, expert methods, principal components analysis, hierarchical agglomerative clustering). As part of a study of economic sectors and digital technologies, the market structure is analyzed, and the dynamics of development indicators of digitalization processes is described.Results. The landscape of modern ecosystem research, types and properties of ecosystems, the composition of actors and exchange resources by ecosystem type are systematized, the concept of ecosystem entity is developed, and the specific features of industrial ecosystem management are determined. A structural model for industrial ecosystem management is developed. Four strategies for the industrial ecosystem orchestrator are recommended: increasing value, building trust, activating industrial ecology, institutionalization.Conclusions. In the context of digital transformation, it is advisable to implement strategic management of industrial ecosystems based on the platform concept. The results of managing an industrial ecosystem with the orchestrator function include enhancing the maturity and integration potential of synergetic interaction in the ecosystem, maintaining a high level of coherence (consistency) between actors at different hierarchical levels, creating long-term value and improving the quality of life.


Sign in / Sign up

Export Citation Format

Share Document