Seismic reliability analysis of random parameter aqueduct structure under random earthquake

2022 ◽  
Vol 153 ◽  
pp. 107083
Author(s):  
Chunyu Zhang ◽  
Jianguo Xu ◽  
Yulin Qian ◽  
Jinpeng Zhang ◽  
Ren Wang ◽  
...  
2007 ◽  
Vol 36 (13) ◽  
pp. 2081-2081 ◽  
Author(s):  
P. E. Pinto ◽  
R. Giannini ◽  
P. Franchin

2018 ◽  
Vol 21 (15) ◽  
pp. 2326-2339 ◽  
Author(s):  
Shyamal Ghosh ◽  
Swarup Ghosh ◽  
Subrata Chakraborty

Seismic reliability analysis of bridge structures during and succeeding an earthquake event is of significant importance. The more accurate and robust approach of seismic reliability analysis is based on direct Monte Carlo simulation technique. But it is computationally challenging due to the requirement of large number of nonlinear time history analyses. The response surface method–based metamodeling approach is a viable alternative in such situation. This study explores the advantage of moving least squares method–based adaptive response surface method compared to the usually applied least squares method–based response surface method for improved seismic reliability analysis of multi-span bridge pier. The nonlinear time history analyses of the bridge pier are performed in the OpenSees with fibre sections considering a ground motion bin corresponding to the specified hazard level of the bridge site. The seismic reliability analysis results obtained by the usual least squares method and the proposed moving least squares method–based response surface method are compared with that of obtained by more accurate direct Monte Carlo simulation technique to elucidate the effectiveness of the proposed approach.


Author(s):  
Shyamal Ghosh ◽  
Soham Mitra ◽  
Swarup Ghosh ◽  
Subrata Chakraborty

A comparative study of various metamodelling approaches namely the least squares method (LSM), moving least squares method (MLSM) and artificial neural network (ANN) based response surface method (RSM) are presented to demonstrate the effectiveness to approximate the nonlinear dynamic response of structure required for efficient seismic reliability analysis (SRA) of structures. The seismic response approximation by the LSM, MLSM and ANN based RSMs are explained with a brief note on the important issue of ground motion bin generation. The procedure adopted herein for SRA is based on the dual response surface approach. In doing so, the repetition of seismic intensity for SRA at different intensity levels is avoided by including this as one of the predictors in the seismic response prediction model. A nonlinear SDOF system has been taken up to elucidate the effectiveness of various metamodels in SRA.


Sign in / Sign up

Export Citation Format

Share Document