Non-aggregating zinc phthalocyanine sensitizer with bulky diphenylphenoxy donor groups and pyrazole-3-carboxylic acid anchoring group for coadsorbent-free dye-sensitized solar cells

Solar Energy ◽  
2021 ◽  
Vol 226 ◽  
pp. 173-179
Author(s):  
Burak Yıldız ◽  
Barış Seçkin Arslan ◽  
Emre Güzel ◽  
Mehmet Nebioğlu ◽  
Nurettin Menges ◽  
...  
2021 ◽  
Author(s):  
Kevser Harmandar ◽  
Kevin Granados-Tavera ◽  
Merve Keskin ◽  
Mehmet Nebioğlu ◽  
İlkay Şişman ◽  
...  

An asymmetric zinc phthalocyanine dye (KH1) bearing three 2,6-di-tert-butyl-4-methylphenoxy donor groups and carboxylic acid anchoring group was synthesized as a sensitizer for dye-sensitized solar cells (DSSCs). The DSSC based on...


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1692
Author(s):  
Basma Ghazal ◽  
Kobra Azizi ◽  
Ewies F. Ewies ◽  
Ahmed S. A. Youssef ◽  
Valid Mwatati Mwalukuku ◽  
...  

An asymmetrical, push–pull phthalocyanine bearing bulky tert-butylcarbazolyl moieties as electron donor and carboxylic acid as anchoring group was synthetized and tested as a photosensitizer in dye-sensitized solar cells (DSSC). The new photosensitizer was characterized by 1H and 13C NMR, UV–Vis and mass spectrometry. The bulky tert-butylcarbazolyl moieties avoid the aggregation of the phthalocyanine dye. DFT studies indicate that the HOMO is delocalized throughout the -electron system of the substituted phthalocyanine and the LUMO is located on the core of the molecule with a sizable electron density distribution on carboxyl groups. The new dye has been used as a photosensitizer in transparent and opaque dye-sensitized solar cells, which exhibit poor efficiencies related to a low Jsc.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 82292-82295 ◽  
Author(s):  
Mutsumi Kimura ◽  
Yuki Tohata ◽  
Takuro Ikeuchi ◽  
Shogo Mori

Double anchored ZnPc sensitizer PcS25 exhibited higher conversion efficiency in dye-sensitized solar cells with cobalt(ii/iii)-based redox electrolyte than single-anchored ZnPc sensitizers.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27570-27582
Author(s):  
Sabir Ali Siddique ◽  
Muhammad Arshad ◽  
Sabiha Naveed ◽  
Muhammad Yasir Mehboob ◽  
Muhammad Adnan ◽  
...  

We used a quantum chemical approach to investigate the optoelectronic properties of dyes T1–T5 for dye-sensitized solar cells using DFT and TD-DFT computation. The newly designed molecules exhibited outstanding photovoltaic and optoelectronic properties.


ChemSusChem ◽  
2017 ◽  
Vol 10 (17) ◽  
pp. 3347-3351 ◽  
Author(s):  
Tomohiro Higashino ◽  
Yuma Kurumisawa ◽  
Ning Cai ◽  
Yamato Fujimori ◽  
Yukihiro Tsuji ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


Sign in / Sign up

Export Citation Format

Share Document