acid moiety
Recently Published Documents


TOTAL DOCUMENTS

518
(FIVE YEARS 73)

H-INDEX

42
(FIVE YEARS 6)

Author(s):  
Fumiyuki Kiuchi

AbstractAchyranthes root is a crude drug used as diuretic, tonic and remedy for blood stasis. Characteristic oleanolic acid saponins with a dicarboxylic acid moiety have been isolated as one of the representative constituents of this crude drug. This review focuses on the triterpene saponin constituents, especially those with a characteristic dicarboxylic acid moiety, of A. bidentata and A. fauriei. Several groups isolated the saponins and different names were given to one compound in some cases. The names of the compounds are sorted out and the stereochemistry of the dicarboxylic acid moieties are summarized. HPLC analysis of the composition of the saponin constituents and the effect of processing and extraction conditions on the composition are reviewed. Biological activities of the saponin constituents are also summarized.


2022 ◽  
Author(s):  
Ido Domb ◽  
Danilo Machado Lustosa ◽  
Anat Milo
Keyword(s):  

In this work, we exploit our strategy of in situ secondary-sphere modification of organocatalysts to improve the reactivity and selectivity of amino catalysts. Herein, the carboxylic acid moiety of proline...


Molbank ◽  
10.3390/m1304 ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. M1304
Author(s):  
Boris V. Lichitsky ◽  
Andrey N. Komogortsev ◽  
Valeriya G. Melekhina

For the first time, we describe a new approach towards the synthesis of previously unknown 2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f]chromen-3-yl)acetic acid. The presented method is based on the multicomponent condensation of 5-hydroxy-4,7-dimethyl-2H-chromen-2-one, 4-methoxyphenylglyoxal and Meldrum’s acid. It was shown that the studied reaction proceeds in two steps including the initial interaction of starting materials in MeCN and the final formation of furylacetic acid moiety in acidic media. The structures of the obtained compound were established by 1H, 13C-NMR spectroscopy and high-resolution mass spectrometry.


2021 ◽  
Vol 22 (22) ◽  
pp. 12338
Author(s):  
Jianrong Wu ◽  
Miaosen Wu ◽  
Hongtao Zhang ◽  
Xiaobei Zhan ◽  
Nian Wu

Oligomannuronic acid (MOS) from seaweed has antioxidant and anti-inflammatory activities. In this study, MOS was activated at the terminal to obtain three different graft complexes modified with sialic acid moiety (MOS-Sia). The results show that MOS-Sia addition can reduce the β-structure formation of Aβ42, and the binding effect of MOS-Sia3 is more obvious. MOS-Sia conjugates also have a better complexing effect with Ca2+ while reducing the formation of Aβ42 oligomers in solutions. MOS-Sia3 (25–50 μg/mL) can effectively inhibit the activation state of BV-2 cells stimulated by Aβ42, whereas a higher dose of MOS-Sia3 (>50 μg/mL) can inhibit the proliferation of BV-2 cells to a certain extent. A lower dose of MOS-Sia3 can also inhibit the expression of IL-1β, IL-6, TNF-α, and other proinflammatory factors in BV-2 cells induced by Aβ42 activation. In the future, the MOS-Sia3 conjugate can be used to treat Alzheimer’s disease.


2021 ◽  
Author(s):  
Tingting Huang ◽  
Zihua Zhou ◽  
Maolong Wei ◽  
Lin Chen ◽  
Zhihong Xiao ◽  
...  

Pyridomycin, a cyclodepsipeptide with potent antimycobacterial activity, specifically inhibits the InhA enoyl reductase of Mycobacteria tuberculosis. Structure-activity relationship studies indicated that the enolic acid moiety in pyridomycin core system is an important pharmacophoric group and the natural configuration of the C-10 hydroxyl contributes to the bioactivity of pyridomycin. The ring structure of pyridomycin was generated by the nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) hybrid system (PyrE-F-G). Bioinformatics analysis reveals that SDR family protein Pyr2 functions as a 3-oxoacyl ACP reductase in the pyridomycin pathway. Inactivation of pyr2 resulted in accumulation of pyridomycin B, a new pyridomycin analogue featured with enol moiety in pyridyl alanine moiety and a saturated 3-methylvaleric acid group. The elucidated structure of pyridomycin B suggests that rather than functioning as a post-tailoring enzyme, Pyr2 catalyzes ketoreduction to form the C-10 hydroxyl group in pyridyl alanine moiety and the double bond formation of the enolic acid moiety derived from isoleucine when the intermediate assembled by PKS-NRPS machinery is still tethered to the last NRPS module, in a special energy-saving manner. Ser-His-Lys residues constitute the active site of Pyr2, which is different from the typically conserved Tyr based catalytic triad in the majority of SDRs. Site-directed mutation identified that His154 in the active site is a critical residue for pyridomycin B production. These findings will improve our understanding of the pyridomycin biosynthetic logic, identify the missing link for the double bound formation of enol ester in pyridomycin and enable creating chemical diversity of pyridomycin derivatives.


Sign in / Sign up

Export Citation Format

Share Document