A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam

2017 ◽  
Vol 171 ◽  
pp. 197-204 ◽  
Author(s):  
Wenqiang Li ◽  
Ruifeng Hou ◽  
Hao Wan ◽  
Peijin Liu ◽  
Guoqiang He ◽  
...  
Author(s):  
Dominic Groulx ◽  
Wilson Ogoh

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase change behavior of the phase change material can be modeled numerically using the finite element method. Only charging (melting) is treated in this paper. The appearance and the behavior of the melting front can be simulated by modifying the specific heat of the PCM to account for the increased amount of energy, in the form of latent heat of fusion, needed to melt the PCM over its melting temperature range. The effects of adding fins to the system are also studied, as well as the effects of the water inlet velocity.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 76 ◽  
Author(s):  
Bernardo Buonomo ◽  
Anna di Pasqua ◽  
Davide Ercole ◽  
Oronzio Manca

Thermal storage system (TES) with phase change material (PCM) is an important device to store thermal energy. It works as a thermal buffer to reconcile the supply energy with the energy demand. It has a wide application field, especially for solar thermal energy storage. The main drawback is the low value of thermal conductivity of the PCM making the system useless for thermal engineering applications. A way to resolve this problem is to combine the PCM with a highly conductive material like metal foam and/or nanoparticles. In this paper a numerical investigation on the metal foam effects in a latent heat thermal energy storage system, based on a phase change material with nanoparticles (nano-PCM), is accomplished. The modelled TES is a typical 70 L water tank filled with nano-PCM with pipes to transfer thermal energy from a fluid to the nano-PCM. The PCM is a pure paraffin wax and the nanoparticles are in aluminum oxide. The metal foam is made of aluminum with assigned values of porosity. The enthalpy-porosity theory is employed to simulate the phase change of the nano-PCM and the metal foam is modelled as a porous media. Numerical simulations are carried out using the Ansys Fluent code. The results are shown in terms of melting time, temperature at varying of time, and total amount of stored energy.


Author(s):  
Michael R. Reid ◽  
Rebecca N. Webb ◽  
Taylor C. Lilly ◽  
David B. Scharfe

Latent heat energy storage systems have higher energy density than their sensible heat counterparts and have the added benefit of constant temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using the heat transfer in solids with surface-to surface radiation physics module of the commercially available COMSOL Multiphysics simulation software. The progression of the solidification and melting fronts through the phase change material was modeled for two different methods of concentrated solar irradiation delivery. Heating the core of the PCM rather than the top of the PCM decreased the required solar input by 17%, decreasing the solar collector area required as well as lowering overall system weight.


2020 ◽  
Vol 197 ◽  
pp. 08001
Author(s):  
Bernardo Buonomo ◽  
Lucia Capasso ◽  
Oronzio Manca ◽  
Ferdinando Menale ◽  
Sergio Nardini

In this paper, a two-dimensional numerical investigation on a prototypal solar chimney system integrated with an absorbing capacity wall in a south facade of a building is presented. The capacity wall is composed of a high absorbing plate and an assigned thickness of phase change material in metal foam. The chimney consists of a converging channel with one vertical absorbing wall and the glass plate inclined of 2°. The channel height inside the chimney is equal to 4.0 m, whereas the channel gap is at the inlet equal to 0.34 m and at the outlet it is 0.20 m. The thermal energy storage system is 4.0 m high. The numerical analysis was intended to evaluate the thermal and fluid dynamic behaviors of the solar chimney integrated with a latent thermal energy storage system. The investigation has shown that in all cases PCM has not fully melted during the day and the presence of aluminum foam inside the box attenuates the variation of temperatures during the day. The results show that the three different thickness of the thermal storage system present very similar fluid dynamic and thermal behaviors. For the analyzed configurations, the phase change material does not reach a total melting during the considered day.


Sign in / Sign up

Export Citation Format

Share Document