Computational Evaluation of Latent Heat Energy Storage Using a High Temperature Phase Change Material

Author(s):  
Michael R. Reid ◽  
Rebecca N. Webb ◽  
Taylor C. Lilly ◽  
David B. Scharfe

Latent heat energy storage systems have higher energy density than their sensible heat counterparts and have the added benefit of constant temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using the heat transfer in solids with surface-to surface radiation physics module of the commercially available COMSOL Multiphysics simulation software. The progression of the solidification and melting fronts through the phase change material was modeled for two different methods of concentrated solar irradiation delivery. Heating the core of the PCM rather than the top of the PCM decreased the required solar input by 17%, decreasing the solar collector area required as well as lowering overall system weight.

Author(s):  
Thomas R. Amundson ◽  
David B. Scharfe ◽  
Rebecca N. Webb

Latent heat energy storage is one of the most efficient ways to store solar thermal energy. A system capable of receiving, absorbing, and collecting solar energy and storing it within a high temperature phase change material has been designed as part of a power system to be used on a low Earth orbit satellite. The system employs silicon as the phase change material and thermophotovoltaic cells for the conversion of stored heat energy into electrical energy. The effect of a void, in the phase change material, on system temperature and the associated thermophotovoltaic power production is determined through computational evaluation.


Author(s):  
Dominic Groulx ◽  
Wilson Ogoh

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase change behavior of the phase change material can be modeled numerically using the finite element method. Only charging (melting) is treated in this paper. The appearance and the behavior of the melting front can be simulated by modifying the specific heat of the PCM to account for the increased amount of energy, in the form of latent heat of fusion, needed to melt the PCM over its melting temperature range. The effects of adding fins to the system are also studied, as well as the effects of the water inlet velocity.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5024
Author(s):  
Xiaoling Cui ◽  
Xiaoyun Du ◽  
Yanzhou Cao ◽  
Guochen Sang ◽  
Yangkai Zhang ◽  
...  

Efficient use of solar energy by thermal energy storage composites and utilizing environmentally friendly cementitious materials are important trends for sustainable building composite materials. In this study, a paraffin/low density polyethylene (LDPE) composite shape-stabilized phase change material (SSPCM) was prepared and incorporated into a sulphoaluminate cement (SAC) mortar to prepare thermal energy storage mortar. The thermal and mechanical properties of SSPCM and a SAC-based thermal energy storage material (SCTESM) were investigated. The result of differential scanning calorimeter (DSC) analysis indicates that the latent heat of SCTESM is as high as 99.99 J/g. Thermogravimetric analysis demonstrates that the SCTESM does not show significant decomposition below 145 °C. The volume stability test shows the volume shrinkage percentage of the SCTESM is less than that of pure SAC mortar and far less than that of ordinary Portland cement mortar. The SCTESM has high early strength so that the compressive strength at 1-, 3-, and 7-day curing age is up to that at 28-day curing age of 67.5%, 78.3%, and 86.7%, respectively. Furthermore, a mathematical prediction model of the SCTESM compressive strength was proposed. The investigation of latent heat storage characteristics and the thermoregulating performance reveals that SCTESMs have the excellent capacity of heat storage and thermoregulating.


2011 ◽  
Vol 347-353 ◽  
pp. 3404-3408 ◽  
Author(s):  
H. Z. Cui ◽  
G. F. Zhu

In this paper, a phase-change-material/lightweight aggregate (PCM-LWA) composite thermal energy storage material was prepared by absorbing the lauryl alcohol, which is one kind of phase change materials, into porous lightweight aggregates (LWAs) that have an excellent absorbability. In such a composite, the lauryl alcohol serves as a latent heat storage material and the porous lightweight aggregate acts as the supporting material. In order to prevent the melted lauryl alcohol leak from the porous LWAs, surface seal processing for the PCM-LWA was necessary. In this research, pure cement paste and polymer modified cement paste were used to seal the PCM-LWA surface. Through comparison between the differential scanning calorimetry (DSC) tests for lauryl alcohol and PCM-LWA, it can be known that the solid-liquid phase change temperature of the composite PCM-LWA was slightly higher than that of the lauryl alcohol, and latent heat of the PCM-LWA was smaller than that of the pure PCM.


Sign in / Sign up

Export Citation Format

Share Document