Temporal envelope cues and simulations of cochlear implant signal processing

2019 ◽  
Vol 109 ◽  
pp. 24-33 ◽  
Author(s):  
Raymond L. Goldsworthy
2012 ◽  
Vol 43 (01) ◽  
Author(s):  
L Timm ◽  
D Agrawal ◽  
M Wittfoth ◽  
R Dengler

1984 ◽  
Vol 97 (sup413) ◽  
pp. 115-123 ◽  
Author(s):  
Bradly J. Edgerton ◽  
Judith A. Brimacombe

2020 ◽  
Vol 24 ◽  
pp. 233121652097034
Author(s):  
Florian Langner ◽  
Andreas Büchner ◽  
Waldo Nogueira

Cochlear implant (CI) sound processing typically uses a front-end automatic gain control (AGC), reducing the acoustic dynamic range (DR) to control the output level and protect the signal processing against large amplitude changes. It can also introduce distortions into the signal and does not allow a direct mapping between acoustic input and electric output. For speech in noise, a reduction in DR can result in lower speech intelligibility due to compressed modulations of speech. This study proposes to implement a CI signal processing scheme consisting of a full acoustic DR with adaptive properties to improve the signal-to-noise ratio and overall speech intelligibility. Measurements based on the Short-Time Objective Intelligibility measure and an electrodogram analysis, as well as behavioral tests in up to 10 CI users, were used to compare performance with a single-channel, dual-loop, front-end AGC and with an adaptive back-end multiband dynamic compensation system (Voice Guard [VG]). Speech intelligibility in quiet and at a +10 dB signal-to-noise ratio was assessed with the Hochmair–Schulz–Moser sentence test. A logatome discrimination task with different consonants was performed in quiet. Speech intelligibility was significantly higher in quiet for VG than for AGC, but intelligibility was similar in noise. Participants obtained significantly better scores with VG than AGC in the logatome discrimination task. The objective measurements predicted significantly better performance estimates for VG. Overall, a dynamic compensation system can outperform a single-stage compression (AGC + linear compression) for speech perception in quiet.


2012 ◽  
Vol 132 (2) ◽  
pp. 1113-1119 ◽  
Author(s):  
Jong Ho Won ◽  
Christian Lorenzi ◽  
Kaibao Nie ◽  
Xing Li ◽  
Elyse M. Jameyson ◽  
...  

2021 ◽  
Vol 32 (08) ◽  
pp. 478-486
Author(s):  
Lisa G. Potts ◽  
Soo Jang ◽  
Cory L. Hillis

Abstract Background For cochlear implant (CI) recipients, speech recognition in noise is consistently poorer compared with recognition in quiet. Directional processing improves performance in noise and can be automatically activated based on acoustic scene analysis. The use of adaptive directionality with CI recipients is new and has not been investigated thoroughly, especially utilizing the recipients' preferred everyday signal processing, dynamic range, and/or noise reduction. Purpose This study utilized CI recipients' preferred everyday signal processing to evaluate four directional microphone options in a noisy environment to determine which option provides the best speech recognition in noise. A greater understanding of automatic directionality could ultimately improve CI recipients' speech-in-noise performance and better guide clinicians in programming. Study Sample Twenty-six unilateral and seven bilateral CI recipients with a mean age of 66 years and approximately 4 years of CI experience were included. Data Collection and Analysis Speech-in-noise performance was measured using eight loudspeakers in a 360-degree array with HINT sentences presented in restaurant noise. Four directional options were evaluated (automatic [SCAN], adaptive [Beam], fixed [Zoom], and Omni-directional) with participants' everyday use signal processing options active. A mixed-model analysis of variance (ANOVA) and pairwise comparisons were performed. Results Automatic directionality (SCAN) resulted in the best speech-in-noise performance, although not significantly better than Beam. Omni-directional performance was significantly poorer compared with the three other directional options. A varied number of participants performed their best with each of the four-directional options, with 16 performing best with automatic directionality. The majority of participants did not perform best with their everyday directional option. Conclusion The individual variability seen in this study suggests that CI recipients try with different directional options to find their ideal program. However, based on a CI recipient's motivation to try different programs, automatic directionality is an appropriate everyday processing option.


2005 ◽  
Vol 117 (4) ◽  
pp. 2397-2397
Author(s):  
Xihong Wu ◽  
Hongwei Qu ◽  
Jing Chen ◽  
Tianshu Qu ◽  
Liang Li

2018 ◽  
Vol 143 (3) ◽  
pp. 1943-1943
Author(s):  
Bernardo Murta ◽  
Rafael Chiea ◽  
Gustavo Mourão ◽  
Stephan Paul ◽  
Julio A. Cordioli

Sign in / Sign up

Export Citation Format

Share Document