Sufficient conditions for stochastic equality of two distributions under some partial orders

2010 ◽  
Vol 80 (5-6) ◽  
pp. 513-518
Author(s):  
B.L.S. Prakasa Rao ◽  
Harshinder Singh
1978 ◽  
Vol 25 (2) ◽  
pp. 241-249 ◽  
Author(s):  
K. B. Prabhakara Rao

AbstractAn attempt is made to extend the theory of extensions of partial orders in groups to strict partially ordered N-groups. Necessary and sufficient conditions, for a strict partial order of an N-group to have a strict full extension, and for a strict partial order of an N-group to be an intersection of strict full orders, are obtained when the partially ordered near-ring N and the N-group G satisfy the condition (− x) n = − xn for all elements x in G and positive elements n in N.


Author(s):  
Barry Arnold

Arnold and Gokhale (2017) provided a characterization of the Lorenz inequality order between distributions with common finite support. In the more general Lorenz order context, a variety of partial orders are often used to verify the existence of Lorenz ordering. In this paper we investigate whether parallel results can be identified within the common finite support context.


1998 ◽  
Vol 35 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Marco Scarsini

We consider the convex ordering for random vectors and some weaker versions of it, like the convex ordering for linear combinations of random variables. First we establish conditions of stochastic equality for random vectors that are ordered by one of the convex orderings. Then we establish necessary and sufficient conditions for the convex ordering to hold in the case of multivariate normal distributions and sufficient conditions for the positive linear convex ordering (without the restriction to multi-normality).


1998 ◽  
Vol 35 (01) ◽  
pp. 93-103 ◽  
Author(s):  
Marco Scarsini

We consider the convex ordering for random vectors and some weaker versions of it, like the convex ordering for linear combinations of random variables. First we establish conditions of stochastic equality for random vectors that are ordered by one of the convex orderings. Then we establish necessary and sufficient conditions for the convex ordering to hold in the case of multivariate normal distributions and sufficient conditions for the positive linear convex ordering (without the restriction to multi-normality).


2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.


Sign in / Sign up

Export Citation Format

Share Document