Limit laws for the number of triangles in the generalized random graphs with random node weights

2020 ◽  
Vol 161 ◽  
pp. 108733
Author(s):  
Qun Liu ◽  
Zhishan Dong
Keyword(s):  
2013 ◽  
Vol 27 (2) ◽  
pp. 247-260 ◽  
Author(s):  
Qunqiang Feng ◽  
Zhishui Hu ◽  
Chun Su

Several limit laws for the Zagreb indices of the classical Erdös–Rényi random graphs are investigated in this paper. We have obtained the necessary and sufficient condition for the asymptotic normality of the two Zagreb indices (suitably normalized), as well as the explicit values for the means and variances of both the indices. Besides, the limiting joint distribution of the numbers of paths of various lengths is also studied under several conditions.


2013 ◽  
Vol 83 (12) ◽  
pp. 2607-2614 ◽  
Author(s):  
Anthony G. Pakes
Keyword(s):  

2014 ◽  
Vol 89 ◽  
pp. 65-76 ◽  
Author(s):  
Zhishui Hu ◽  
Wei Bi ◽  
Qunqiang Feng
Keyword(s):  

2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


Author(s):  
V. F. Kolchin
Keyword(s):  

Author(s):  
A.C.C. Coolen ◽  
A. Annibale ◽  
E.S. Roberts

This chapter reviews graph generation techniques in the context of applications. The first case study is power grids, where proposed strategies to prevent blackouts have been tested on tailored random graphs. The second case study is in social networks. Applications of random graphs to social networks are extremely wide ranging – the particular aspect looked at here is modelling the spread of disease on a social network – and how a particular construction based on projecting from a bipartite graph successfully captures some of the clustering observed in real social networks. The third case study is on null models of food webs, discussing the specific constraints relevant to this application, and the topological features which may contribute to the stability of an ecosystem. The final case study is taken from molecular biology, discussing the importance of unbiased graph sampling when considering if motifs are over-represented in a protein–protein interaction network.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Sign in / Sign up

Export Citation Format

Share Document