Process convergence of fluctuations of linear eigenvalue statistics of band Toeplitz matrices

2020 ◽  
Vol 166 ◽  
pp. 108875
Author(s):  
Shambhu Nath Maurya ◽  
Koushik Saha
Author(s):  
Arup Bose ◽  
Shambhu Nath Maurya ◽  
Koushik Saha

We discuss the process convergence of the time dependent fluctuations of linear eigenvalue statistics of random circulant matrices with independent Brownian motion entries, as the dimension of the matrix tends to [Formula: see text]. Our derivation is based on the trace formula of circulant matrix, method of moments and some combinatorial techniques.


Author(s):  
Fuqing Gao ◽  
Jianyong Mu

We establish a moderate deviation principle for linear eigenvalue statistics of [Formula: see text]-ensembles in the one-cut regime with a real-analytic potential. The main ingredient is to obtain uniform estimates for the correlators of a family of perturbations of [Formula: see text]-ensembles using the loop equations.


2016 ◽  
Vol 05 (02) ◽  
pp. 1650007 ◽  
Author(s):  
Vladimir Vasilchuk

We consider the ensemble of [Formula: see text] random matrices [Formula: see text], where [Formula: see text] and [Formula: see text] are non-random, unitary, having the limiting Normalized Counting Measure (NCM) of eigenvalues, and [Formula: see text] is unitary, uniformly distributed over [Formula: see text]. We find the leading term of the covariance of traces of resolvent of [Formula: see text] and establish the Central Limit Theorem for sufficiently smooth linear eigenvalue statistics of [Formula: see text] as [Formula: see text].


Author(s):  
Zhigang Bao ◽  
Kevin Schnelli ◽  
Yuanyuan Xu

Abstract We consider random matrices of the form $H_N=A_N+U_N B_N U^*_N$, where $A_N$ and $B_N$ are two $N$ by $N$ deterministic Hermitian matrices and $U_N$ is a Haar distributed random unitary matrix. We establish a universal central limit theorem for the linear eigenvalue statistics of $H_N$ on all mesoscopic scales inside the regular bulk of the spectrum. The proof is based on studying the characteristic function of the linear eigenvalue statistics and consists of two main steps: (1) generating Ward identities using the left-translation invariance of the Haar measure, along with a local law for the resolvent of $H_N$ and analytic subordination properties of the free additive convolution, allows us to derive an explicit formula for the derivative of the characteristic function; (2) a local law for two-point product functions of resolvents is derived using a partial randomness decomposition of the Haar measure. We also prove the corresponding results for orthogonal conjugations.


Sign in / Sign up

Export Citation Format

Share Document