deviation principle
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 64)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Paola Bermolen ◽  
Valeria Goicoechea ◽  
Matthieu Jonckheere ◽  
Ernesto Mordecki

2022 ◽  
Vol 7 (4) ◽  
pp. 5943-5956
Author(s):  
Shuang Guo ◽  
◽  
Yong Zhang

<abstract><p>Let $ \{X_n, n\geq1\} $ be a sequence of $ m $-dependent strictly stationary random variables in a sub-linear expectation $ (\Omega, \mathcal{H}, \mathbb{E}) $. In this article, we give the definition of $ m $-dependent sequence of random variables under sub-linear expectation spaces taking values in $ \mathbb{R} $. Then we establish moderate deviation principle for this kind of sequence which is strictly stationary. The results in this paper generalize the result that in the case of independent identically distributed samples. It provides a basis to discuss the moderate deviation principle for other types of dependent sequences.</p></abstract>


2021 ◽  
pp. 1-12
Author(s):  
YONG MOO CHUNG ◽  
KENICHIRO YAMAMOTO

Abstract We show that a piecewise monotonic map with positive topological entropy satisfies the level-2 large deviation principle with respect to the unique measure of maximal entropy under the conditions that the corresponding Markov diagram is irreducible and that the periodic measures of the map are dense in the set of ergodic measures. This result can apply to a broad class of piecewise monotonic maps, such as monotonic mod one transformations and piecewise monotonic maps with two monotonic pieces.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ibrahima Sane ◽  
Alassane Diedhiou

Abstract We provide a large deviation principle on the stochastic differential equations with reflecting Wentzel boundary condition if δ ε {\frac{\delta}{\varepsilon}} tends to 0 when the two parameters δ (homogenization parameter) and ε (the large deviations parameter) tend to zero. Here, we suppose that the homogenization parameter converges sufficiently quickly more than the large deviations parameter. Furthermore, we will make explicit the associated rate function.


Sign in / Sign up

Export Citation Format

Share Document