Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

2014 ◽  
Vol 614 ◽  
pp. 128-145 ◽  
Author(s):  
David L. de Castro ◽  
Reinhardt A. Fuck ◽  
Jeffrey D. Phillips ◽  
Roberta M. Vidotti ◽  
Francisco H.R. Bezerra ◽  
...  
2013 ◽  
Author(s):  
David L. de Castro ◽  
Francisco H. R. Bezerra ◽  
Jeffrey D. Phillips ◽  
Reinhardt A. Fuck ◽  
Roberta M. Vidotti

2013 ◽  
Vol 87 (4) ◽  
pp. 1137-1153 ◽  
Author(s):  
LI Wenyong ◽  
ZHOU Jianxin ◽  
XIONG Shengqing ◽  
LIU Yanxu ◽  
XU Jianchun

2006 ◽  
Vol 247 (1-2) ◽  
pp. 61-69 ◽  
Author(s):  
V TIWARI ◽  
M VYGHRESWARARAO ◽  
D MISHRA ◽  
B SINGH

2001 ◽  
Vol 40 (2) ◽  
pp. 67-85
Author(s):  
Juan García-Abdeslem ◽  
Juan Manuel Espinosa-Cardeña ◽  
Luis Munguía-Orozco ◽  
Víctor Manuel Wong-Ortega ◽  
Jorge Ramírez-Hernández

Hemos construido un modelo 2-D de la estructura de la corteza que explica datos aeromagnéticos y de gravedad en un perfil entre la Sierra Juárez y la parte occidental del Valle de Mexicali, cruzando la cuenca Laguna Salada. El modelo ha sido acotado utilizando inferencias independientes acerca de la estructura cortical obtenidas a partir de estudios de refracción sísmica y del modelo Airy-Heiskannen de compensación isostática, mediciones de la densidad de masa y de susceptibilidad magnética en muestras de roca y de un registro de densidad de masa en un pozo, así como con resultados de la inversión del espectro de densidad de potencia de anomalías magnéticas. Nuestro modelo 2-D sugiere que la Sierra Juárez tiene una raíz que se extiende hasta una profundidad de 42 km y que la interfase corteza-manto alcanza una profundidad de 25 km en la región de la cuenca Laguna Salada, Sierra Cucapá, y la parte más occidental del Valle de Mexicali. La inversión del espectro de potencia y el modelo 2-D sugieren que la base de la corteza magnetizada está a ~16 km de profundidad en la región de la Sierra Cucapá. En el modelo 2-D, la geometría de la cuenca Laguna Salada sugiere una estructura de medio graben, donde el basamento profundiza hacia el oriente, con un relleno sedimentario máximo del orden de 3 km. La zona sismogénica alcanza una profundidad de casi 20 km, en concordancia con la profundidad inferida a partir del análisis espectral de las anomalías magnéticas. La microsismicidad en la cuenca Laguna Salada ocurre en cúmulos de eventos que indican zonas de debilidad en donde se relajan los esfuerzos. Los hipocentros se localizaron entre 0 y 19.6 km, siendo más profundos en las márgenes de la cuenca, con tendencias que, dentro de los errores de localización, correlacionan bien con el sistema regional de fallas en el área en estudio. Los mecanismos focales determinados evidencian deformación transtensional, en concordancia con el marco tectónico regional.


Geophysics ◽  
2020 ◽  
pp. 1-76
Author(s):  
Mehrdad Darijani ◽  
Colin G. Farquharson ◽  
Peter G. Lelièvre

Magnetic and gravity data are used in the early stages of exploration for uranium deposits in the Athabasca Basin of Canada, just as for many other mineral exploration scenarios. Uranium mineralization in the Athabasca Basin is located where faults in the basement intersect the unconformity between the basement and the overlying sandstones. Both the gravity and magnetic data are dominated by signatures from the basement and an overburden of glacial sediments. The gravity and magnetic data are effective at mapping the basement geology. Any subtle gravity signal from the mineralization related to the formation of the uranium deposits is masked by the signal from the variable thickness overburden. 3D joint inversion of gravity and magnetic data, first without and then with constraints, is evaluated as a means of better determining the structure of the three main lithologies (overburden, sandstones, basement) in the Athabasca Basin. A significant amount of physical property information is available for the main rock units (and overburden), which makes the use of the compositional approach to joint inversion appropriate. For the joint inversion, the fuzzy c-mean clustering method is used. Results from representative synthetic examples show that the joint inversions can construct the overburden and basement structures better than the independent inversions of gravity and magnetic data. Furthermore, constrained joint inversion allows delineation of all three major layers in the area. The same inversion strategies were then applied to the real airborne gravity and magnetic data from the McArthur River area in the eastern Athabasca Basin. The results obtained demonstrate the capabilities of joint inversion for real-life situations.


Sign in / Sign up

Export Citation Format

Share Document