Joint and constrained inversion of magnetic and gravity data: A case history from McArthur River area, Canada

Geophysics ◽  
2020 ◽  
pp. 1-76
Author(s):  
Mehrdad Darijani ◽  
Colin G. Farquharson ◽  
Peter G. Lelièvre

Magnetic and gravity data are used in the early stages of exploration for uranium deposits in the Athabasca Basin of Canada, just as for many other mineral exploration scenarios. Uranium mineralization in the Athabasca Basin is located where faults in the basement intersect the unconformity between the basement and the overlying sandstones. Both the gravity and magnetic data are dominated by signatures from the basement and an overburden of glacial sediments. The gravity and magnetic data are effective at mapping the basement geology. Any subtle gravity signal from the mineralization related to the formation of the uranium deposits is masked by the signal from the variable thickness overburden. 3D joint inversion of gravity and magnetic data, first without and then with constraints, is evaluated as a means of better determining the structure of the three main lithologies (overburden, sandstones, basement) in the Athabasca Basin. A significant amount of physical property information is available for the main rock units (and overburden), which makes the use of the compositional approach to joint inversion appropriate. For the joint inversion, the fuzzy c-mean clustering method is used. Results from representative synthetic examples show that the joint inversions can construct the overburden and basement structures better than the independent inversions of gravity and magnetic data. Furthermore, constrained joint inversion allows delineation of all three major layers in the area. The same inversion strategies were then applied to the real airborne gravity and magnetic data from the McArthur River area in the eastern Athabasca Basin. The results obtained demonstrate the capabilities of joint inversion for real-life situations.

Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
Alvin K. Benson ◽  
Andrew R. Floyd

Gravity and magnetic data were collected in the Mosida Hills, Utah County, Utah, at over 1100 stations covering an area of approximately 58 km2 (150 mi2) in order to help define the subsurface geology and assess potential geological hazards for urban planning in an area where the population is rapidly increasing. In addition, potential hydrocarbon traps and mineral ore bodies may be associated with some of the interpreted subsurface structures. Standard processing techniques were applied to the data to remove known variations unrelated to the geology of the area. The residual data were used to generate gravity and magnetic contour maps, isometric projections, profiles, and subsurface models. Ambiguities in the geological models were reduced by (1) incorporating data from previous geophysical surveys, surface mapping, and aeromagnetic data, (2) integrating the gravity and magnetic data from our survey, and (3) correlating the modeled cross sections. Gravity highs and coincident magnetic highs delineate mafic lava flows, gravity lows and magnetic highs reflect tuffs, and gravity highs and magnetic lows spatially correlate with carbonates. These correlations help identify the subsurface geology and lead to new insights about the formation of the associated valleys. At least eight new faults (or fault segments) were identified from the gravity data, whereas the magnetic data indicate the existence of at least three concealed and/or poorly exposed igneous bodies, as well as a large ash‐flow tuff. The presence of low‐angle faults suggests that folding or downwarping, in addition to faulting, played a role in the formation of the valleys in the Mosida Hills area. The interpreted location and nature of concealed faults and volcanic flows in the Mosida Hills area are being used by policy makers to help develop mitigation procedures to protect life and property.


Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2013 ◽  
Vol 87 (4) ◽  
pp. 1137-1153 ◽  
Author(s):  
LI Wenyong ◽  
ZHOU Jianxin ◽  
XIONG Shengqing ◽  
LIU Yanxu ◽  
XU Jianchun

2014 ◽  
Vol 614 ◽  
pp. 128-145 ◽  
Author(s):  
David L. de Castro ◽  
Reinhardt A. Fuck ◽  
Jeffrey D. Phillips ◽  
Roberta M. Vidotti ◽  
Francisco H.R. Bezerra ◽  
...  

1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


2020 ◽  
Vol 224 (2) ◽  
pp. 1344-1359
Author(s):  
Zhengwei Xu ◽  
Guangui Zou ◽  
Qianqian Wei ◽  
Junqi Tian ◽  
Hemin Yuan

SUMMARY This paper develops a minimum-support focusing stabilizer to perform a joint inversion of the vertical components of gravity and magnetic data using fuzzy c-means clustering (FCM) with the regularized Newton method in a space of weighted parameters. Not only does this joint inversion technology arrive at the conditionally well-posed traditional potential field inversion, but it also increases the structural correlation between multiple inverted models. The FCM and the focusing stabilizer make it possible to balance the convergence of the data space (D) and the model space (M), guiding multimodal geophysical parameters toward assigned petrophysical values, which makes the results more stable and realistic. Two model studies are presented to illustrate the method, a simple synthetic model with two rectangular bodies in a homogenous background and a realistic model of the Volcanogenic Massive Sulfide (VMS) deposits in northeastern New Brunswick, Canada. These models demonstrate that the new focusing joint inversion algorithm produces better images than traditional methods because the FCM function uses the structural correlation of density contrast and magnetic susceptibility as constraints.


2019 ◽  
Author(s):  
Zhengwei Xu* ◽  
Guangui Zou ◽  
Jiang Wang ◽  
Junqi Tian ◽  
Yue Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document