orogenic belt
Recently Published Documents


TOTAL DOCUMENTS

1947
(FIVE YEARS 742)

H-INDEX

94
(FIVE YEARS 11)

Author(s):  
Nils Reinhardt ◽  
Axel Gerdes ◽  
Aratz Beranoaguirre ◽  
Max Frenzel ◽  
Lawrence D. Meinert ◽  
...  

AbstractHere, we present in situ U–Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) ages of andradite-grossular garnet from four magmatic-hydrothermal polymetallic skarn prospects in the Schwarzenberg District, Erzgebirge (Germany), located in the internal zone of the Variscan Orogenic Belt. Within the geochronological framework of igneous rocks and hydrothermal mineralization in the Erzgebirge, the obtained garnet ages define three distinct episodes of Variscan skarn formation: (I) early late-collisional mineralization (338–331 Ma) recording the onset of magmatic-hydrothermal fluid flow shortly after the peak metamorphic event, (II) late-collisional mineralization (~ 327–310 Ma) related to the emplacement of large peraluminous granites following large-scale extension caused by orogenic collapse and (III) post-collisional mineralization (~ 310–295 Ma) contemporaneous with widespread volcanism associated with Permian crustal reorganization. Our results demonstrate that the formation of skarns in the Schwarzenberg District occurred episodically in all sub-stages of the Variscan orogenic cycle over a time range of at least 40 Ma. This observation is consistent with the age range of available geochronological data related to magmatic-hydrothermal ore deposits from other internal zones of the Variscan Orogenic Belt in central and western Europe. In analogy to the time–space relationship of major porphyry-Cu belts in South America, the congruent magmatic-hydrothermal evolution in the internal zones and the distinctly later (by ~ 30 Ma) occurrence of magmatic-hydrothermal ore deposits in the external zones of the Variscan Orogenic Belt may be interpreted as a function of their tectonic position relative to the Variscan collisional front.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xutong Guan ◽  
Chaodong Wu ◽  
Xuecai Zhang ◽  
Weiwei Jia ◽  
Wei Zhang

Sedimentary investigations, petrography, heavy mineral and conglomerate component analyses, and detrital zircon U-Pb geochronology were conducted to reconstruct the sedimentary and source-to-sink evolution of the Southern Junggar Basin, an intracontinental basin in the late Mesozoic. A paludal deltaic environment evolved into a fluvial environment, and abruptly prograded into alluvial fan and aeolian environments in the Late Jurassic, which was replaced by fan deltaic and lacustrine environments in the Early Cretaceous. Three source-to-sink systems were identified, according to different source-to-sink system features. In the northern piedmont of the Tianshan Orogenic Belt, the North Tianshan Orogenic Belt mainly provided sediments in the Late Jurassic. The North Tianshan and Central Tianshan Orogenic Belt both supplied sediments in the Early Cretaceous. In the northern piedmont of the Bogda Orogenic Belt, the Bogda Orogenic Belt was constantly the primary provenance, and the Tianshan Orogenic Belt also provided sediments. Sediment recycling occurred in the basin margin in the Late Jurassic and more metamorphic rocks were denudated in the Early Cretaceous. The source-to-sink system shrank in the Late Jurassic and expanded in the Early Cretaceous. This source-to-sink evolution and the conglomerates in the Kalazha Formation with seismite structures responded to the aridification in the Late Jurassic, the uplift of the Bogda and Tianshan Orogenic Belts in the Late Jurassic, and the exhumation of the Bogda and Tianshan Orogenic Belts in the Early Cretaceous.


2022 ◽  
Author(s):  
Sashimeren Imtisunep ◽  
Athokpam Krishnakanta Singh ◽  
Rajkumar Bikramaditya ◽  
Shoraisam Khogenkumar ◽  
Monika Chaubey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document