Image quality of cone-beam computed tomographic images displayed on different media

Author(s):  
M. Ashrafi ◽  
C. Angelopoulos ◽  
J. Katz
2014 ◽  
Vol 41 (6Part1) ◽  
pp. 061910 ◽  
Author(s):  
Uros Stankovic ◽  
Marcel van Herk ◽  
Lennert S. Ploeger ◽  
Jan-Jakob Sonke

2017 ◽  
Vol 5 (5) ◽  
pp. 200-212
Author(s):  
SarahM. Kenawy ◽  
◽  
DinaM.El Beshlawy ◽  
MushiraM. Dahaba ◽  
◽  
...  

2013 ◽  
Vol 30 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Frederico Sampaio Neves ◽  
Thaís de Camargo Souza ◽  
Sérgio Lins de-Azevedo-Vaz ◽  
Paulo Sérgio Flores Campos ◽  
Frab Norberto Bóscolo

2005 ◽  
Vol 33 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Dirk Schulze ◽  
Max Heiland ◽  
Felix Blake ◽  
Uwe Rother ◽  
Rainer Schmelzle

2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


2003 ◽  
Author(s):  
Georg Rose ◽  
Jens Wiegert ◽  
Dirk Schaefer ◽  
Klaus Fiedler ◽  
Norbert Conrads ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document