scholarly journals The human RNA polymerase II interacts with the terminal stem–loop regions of the hepatitis delta virus RNA genome

Virology ◽  
2007 ◽  
Vol 357 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Valerie S. Greco-Stewart ◽  
Paul Miron ◽  
Abrahem Abrahem ◽  
Martin Pelchat
2007 ◽  
Vol 82 (3) ◽  
pp. 1118-1127 ◽  
Author(s):  
Jinhong Chang ◽  
Xingcao Nie ◽  
Ho Eun Chang ◽  
Ziying Han ◽  
John Taylor

ABSTRACT Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.


2000 ◽  
Vol 74 (16) ◽  
pp. 7204-7210 ◽  
Author(s):  
Severin Gudima ◽  
Shwu-Yuan Wu ◽  
Cheng-Ming Chiang ◽  
Gloria Moraleda ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5′ end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5′-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5′ ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5′ end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3′-end addition to the template. These new findings support the interpretation that the 5′ end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping.


Virology ◽  
2009 ◽  
Vol 390 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Dorota Sikora ◽  
Valerie S. Greco-Stewart ◽  
Paul Miron ◽  
Martin Pelchat

Science ◽  
1986 ◽  
Vol 232 (4752) ◽  
pp. 873-875 ◽  
Author(s):  
K. Denniston ◽  
B. Hoyer ◽  
A Smedile ◽  
F. Wells ◽  
J Nelson ◽  
...  

Virology ◽  
2009 ◽  
Vol 386 (1) ◽  
pp. 12-15 ◽  
Author(s):  
Valerie S. Greco-Stewart ◽  
Erica Schissel ◽  
Martin Pelchat

Sign in / Sign up

Export Citation Format

Share Document