rna polymerase ii
Recently Published Documents





2023 ◽  
Vol 83 ◽  
S. U. Rehman ◽  
K. Muhammad ◽  
E. Novaes ◽  
Y. Que ◽  
A. Din ◽  

Abstract Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.

2022 ◽  
Vol 13 (1) ◽  
Yongkang Yang ◽  
Haiquan Lu ◽  
Chelsey Chen ◽  
Yajing Lyu ◽  
Robert N. Cole ◽  

AbstractHypoxia-inducible factor-1 (HIF-1) is a transcription factor that acts as a regulator of oxygen (O2) homeostasis in metazoan species by binding to hypoxia response elements (HREs) and activating the transcription of hundreds of genes in response to reduced O2 availability. RNA polymerase II (Pol II) initiates transcription of many HIF target genes under non-hypoxic conditions but pauses after approximately 30–60 nucleotides and requires HIF-1 binding for release. Here we report that in hypoxic breast cancer cells, HIF-1 recruits TRIM28 and DNA-dependent protein kinase (DNA-PK) to HREs to release paused Pol II. We show that HIF-1α and TRIM28 assemble the catalytically-active DNA-PK heterotrimer, which phosphorylates TRIM28 at serine-824, enabling recruitment of CDK9, which phosphorylates serine-2 of the Pol II large subunit C-terminal domain as well as the negative elongation factor to release paused Pol II, thereby stimulating productive transcriptional elongation. Our studies reveal a molecular mechanism by which HIF-1 stimulates gene transcription and reveal that the anticancer effects of drugs targeting DNA-PK in breast cancer may be due in part to their inhibition of HIF-dependent transcription.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 279
Zhi-Liang Zheng

Cell cycle control is vital for cell proliferation in all eukaryotic organisms. The entire cell cycle can be conceptually separated into four distinct phases, Gap 1 (G1), DNA synthesis (S), G2, and mitosis (M), which progress sequentially. The precise control of transcription, in particular, at the G1 to S and G2 to M transitions, is crucial for the synthesis of many phase-specific proteins, to ensure orderly progression throughout the cell cycle. This mini-review highlights highly conserved transcriptional regulators that are shared in budding yeast (Saccharomyces cerevisiae), Arabidopsis thaliana model plant, and humans, which have been separated for more than a billion years of evolution. These include structurally and/or functionally conserved regulators cyclin-dependent kinases (CDKs), RNA polymerase II C-terminal domain (CTD) phosphatases, and the classical versus shortcut models of Pol II transcriptional control. A few of CDKs and CTD phosphatases counteract to control the Pol II CTD Ser phosphorylation codes and are considered critical regulators of Pol II transcriptional process from initiation to elongation and termination. The functions of plant-unique CDKs and CTD phosphatases in relation to cell division are also briefly summarized. Future studies towards testing a cooperative transcriptional mechanism, which is proposed here and involves sequence-specific transcription factors and the shortcut model of Pol II CTD code modulation, across the three eukaryotic kingdoms will reveal how individual organisms achieve the most productive, large-scale transcription of phase-specific genes required for orderly progression throughout the entire cell cycle.

2022 ◽  
Daniel Gomez-Cabello ◽  
Georgios Pappas ◽  
Diana Aguilar-Morante ◽  
Christoffel Dinant ◽  
Jiri Bartek

The RNA world is changing our views about sensing and resolution of DNA damage. Here, we developed single-molecule DNA/RNA analysis approaches to visualize how nascent RNA facilitates the repair of DNA double-strand breaks (DSBs). RNA polymerase II (RNAPII) is crucial for DSB resolution in human cells. DSB-flanking, RNAPII-generated nascent RNA forms RNA:DNA hybrids, guiding the upstream DNA repair steps towards favouring the error-free Homologous Recombination (HR) pathway over Non-Homologous End Joining. Specific RNAPII inhibitor, THZ1, impairs recruitment of essential HR proteins to DSBs, implicating nascent RNA in DNA end resection, initiation and execution of HR repair. We further propose that resection factor CtIP interacts with and re-activates RNAPII when paused by the RNA:DNA hybrids, collectively promoting faithful repair of chromosome breaks to maintain genomic integrity.

Plant Disease ◽  
2022 ◽  
Martina Sanna ◽  
Massimo Pugliese ◽  
Maria Lodovica GULLINO ◽  
Monica Mezzalama

Maize (Zea mays L.) is a cereal crop of great economic importance in Italy; production is currently of 60,602,320 t, covering 588,597 ha (ISTAT 2021). Trichoderma species are widespread filamentous fungi in soil, well known and studied as biological control agents (Vinale et al., 2008). Seeds of a yellow grain hybrid (class FAO 700, 132 days) were collected in September 2020 from an experimental field located in Carmagnola (TO, Italy: GPS: 44°53'11.0"N 7°40'60.0"E) and tested with blotter test (Warham et al., 1996) to assess their phytosanitary condition. Over the 400 seeds tested, more than 50% showed rotting and development of green mycelium typical of the genus Trichoderma. Due to the high and unexpected percentage of decaying kernels, ten colonies were identified by morphological and molecular methods. Single conidia colonies of one Trichoderma (T5.1) strain were cultured on Potato Dextrose Agar (PDA) for pathogenicity tests, and on PDA and Synthetic Nutrient-Poor Agar (SNA) for morphological and molecular identification. The colonies grown on PDA and SNA showed green, abundant, cottony, and radiating aerial mycelium, and yellow pigmentation on the reverse. Colony radius after 72 h at 30°C was of 60-65 mm on PDA and of 50-55 mm on SNA. The isolates produced one cell conidia 2.8 - 3.8 µm long and 2.1 - 3.6 µm wide (n=50) on SNA. Conidiophores and phialides were lageniform to ampulliform and measured 4.5 – 9.7 µm long and 1.6 – 3.6 µm wide (n=50); the base measure 1.5 – 2.9 µm wide and the supporting cell 1.4 – 2.8 µm wide (n=50). The identity of one single-conidia strain was confirmed by sequence comparison of the internal transcribed spacer (ITS), the translation elongation factor-1α (tef-1α), and RNA polymerase II subunit (rpb2) gene fragments (Oskiera et al., 2015). BLASTn searches of GenBank using ITS (OL691534) the partial tef-1α (OL743117) and rpb2 (OL743116) sequences of the representative isolate T5.1, revealed 100% identity for rpb2 to T. afroharzianum TRS835 (KP009149) and 100% identity for tef-1α to T. afroharzianum Z19 (KR911897). Pathogenicity tests were carried out by suspending conidia from a 14-days old culture on PDA in sterile H2O to 1×106 CFU/ml. Twenty-five seeds were sown in pots filled with a steamed mix of white peat and perlite, 80:20 v/v, and maintained at 23°C under a seasonal day/night light cycle. Twenty primary ears were inoculated, by injection into the silk channel, with 1 ml of a conidial suspension of strain T5.1 seven days after silk channel emergence (BBCH 65) (Pfordt et al., 2020). Ears were removed four weeks after inoculation and disease severity, reaching up to 75% of the kernels of the twenty cobs, was assessed visually according to the EPPO guidelines (EPPO, 2015). Five control cobs, inoculated with 1 ml of sterile distilled water were healthy. T. afroharzianum was reisolated from kernels showing a green mold developing on their surface and identified by resequencing of tef-1α gene. T. afroharzianum has been already reported on maize in Germany and France as causal agent of ear rot of maize (Pfordt et al. 2020). Although several species of Trichoderma are known to be beneficial microorganisms, our results support other findings that report Trichoderma spp. causing ear rot on maize in tropical and subtropical areas of the world (Munkvold and White, 2016). The potential production of mycotoxins and the losses that can be caused by the pathogen during post-harvest need to be explored. To our knowledge this is the first report of T. afroharzianum as a pathogen of maize in Italy.

2022 ◽  
Vol 119 (3) ◽  
pp. e2114065119
Juntaek Oh ◽  
Tiezheng Jia ◽  
Jun Xu ◽  
Jenny Chong ◽  
Peter B. Dervan ◽  

Elongating RNA polymerase II (Pol II) can be paused or arrested by a variety of obstacles. These obstacles include DNA lesions, DNA-binding proteins, and small molecules. Hairpin pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA in a sequence-specific manner and induce strong transcriptional arrest. Remarkably, this Py-Im–induced Pol II transcriptional arrest is persistent and cannot be rescued by transcription factor TFIIS. In contrast, TFIIS can effectively rescue the transcriptional arrest induced by a nucleosome barrier. The structural basis of Py-Im–induced transcriptional arrest and why TFIIS cannot rescue this arrest remain elusive. Here we determined the X-ray crystal structures of four distinct Pol II elongation complexes (Pol II ECs) in complex with hairpin Py-Im polyamides as well as of the hairpin Py-Im polyamides–dsDNA complex. We observed that the Py-Im oligomer directly interacts with RNA Pol II residues, introduces compression of the downstream DNA duplex, prevents Pol II forward translocation, and induces Pol II backtracking. These results, together with biochemical studies, provide structural insight into the molecular mechanism by which Py-Im blocks transcription. Our structural study reveals why TFIIS fails to promote Pol II bypass of Py-Im–induced transcriptional arrest.

2022 ◽  
Vol 5 (4) ◽  
pp. e202101252
Belén Chaves-Arquero ◽  
Santiago Martínez-Lumbreras ◽  
Sergio Camero ◽  
Clara M Santiveri ◽  
Yasmina Mirassou ◽  

Heterodimerization of RNA binding proteins Nrd1 and Nab3 is essential to communicate the RNA recognition in the nascent transcript with the Nrd1 recognition of the Ser5-phosphorylated Rbp1 C-terminal domain in RNA polymerase II. The structure of a Nrd1–Nab3 chimera reveals the basis of heterodimerization, filling a missing gap in knowledge of this system. The free form of the Nrd1 interaction domain of Nab3 (NRID) forms a multi-state three-helix bundle that is clamped in a single conformation upon complex formation with the Nab3 interaction domain of Nrd1 (NAID). The latter domain forms two long helices that wrap around NRID, resulting in an extensive protein–protein interface that would explain the highly favorable free energy of heterodimerization. Mutagenesis of some conserved hydrophobic residues involved in the heterodimerization leads to temperature-sensitive phenotypes, revealing the importance of this interaction in yeast cell fitness. The Nrd1–Nab3 structure resembles the previously reported Rna14/Rna15 heterodimer structure, which is part of the poly(A)-dependent termination pathway, suggesting that both machineries use similar structural solutions despite they share little sequence homology and are potentially evolutionary divergent.

Chromosoma ◽  
2022 ◽  
Samadri Ghosh ◽  
Christian F. Lehner

AbstractIn many species, centromere identity is specified epigenetically by special nucleosomes containing a centromere-specific histone H3 variant, designated as CENP-A in humans and CID in Drosophila melanogaster. After partitioning of centromere-specific nucleosomes onto newly replicated sister centromeres, loading of additional CENP-A/CID into centromeric chromatin is required for centromere maintenance in proliferating cells. Analyses with cultured cells have indicated that transcription of centromeric DNA by RNA polymerase II is required for deposition of new CID into centromere chromatin. However, a dependence of centromeric CID loading on transcription is difficult to reconcile with the notion that the initial embryonic stages appear to proceed in the absence of transcription in Drosophila, as also in many other animal species. To address the role of RNA polymerase II–mediated transcription for CID loading in early Drosophila embryos, we have quantified the effects of alpha-amanitin and triptolide on centromeric CID-EGFP levels. Our analyses demonstrate that microinjection of these two potent inhibitors of RNA polymerase II–mediated transcription has at most a marginal effect on centromeric CID deposition during progression through the early embryonic cleavage cycles. Thus, we conclude that at least during early Drosophila embryogenesis, incorporation of CID into centromeres does not depend on RNA polymerase II–mediated transcription.

MycoKeys ◽  
2022 ◽  
Vol 86 ◽  
pp. 19-46
Shun Liu ◽  
Tai-Min Xu ◽  
Chang-Ge Song ◽  
Chang-Lin Zhao ◽  
Dong-Mei Wu ◽  

Cyanosporus is a genus widely distributed in Asia, Europe, North America, South America and Oceania. It grows on different angiosperm and gymnosperm trees and can cause brown rot of wood. Blue-tinted basidiomata of Cyanosporus makes it easy to distinguish from other genera, but the similar morphological characters make it difficult to identify species within the genus. Phylogeny and taxonomy of Cyanosporus were carried out based on worldwide samples with an emphasis on Chinese collections, and the species diversity of the genus is updated. Four new species, C. flavus, C. rigidus, C. subungulatus and C. tenuicontextus, are described based on the evidence of morphological characters, distribution areas, host trees and molecular phylogenetic analyses inferred from the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF). Our study expanded the number of Cyanosporus species to 35 around the world including 23 species from China. Detailed descriptions of the four new species and the geographical locations of the Cyanosporus species in China are provided.

2022 ◽  
Vol 13 (1) ◽  
Lili Gu ◽  
David Casserly ◽  
Gareth Brady ◽  
Susan Carpenter ◽  
Adrian P. Bracken ◽  

AbstractType I interferons (IFNs) are critical for anti-viral responses, and also drive autoimmunity when dysregulated. Upon viral sensing, monocytes elicit a sequential cascade of IFNβ and IFNα production involving feedback amplification, but how exactly this cascade is regulated in human cells is incompletely understood. Here we show that the PYHIN protein myeloid cell nuclear differentiation antigen (MNDA) is required for IFNα induction in monocytes. Unlike other PYHINs, this is not due to a pathogen sensing role, but rather MNDA regulated expression of IRF7, a transcription factor essential for IFNα induction. Mechanistically, MNDA is required for recruitment of STAT2 and RNA polymerase II to the IRF7 gene promoter, and in fact MNDA is itself recruited to the IRF7 promoter after type I IFN stimulation. These data implicate MNDA as a critical regulator of the type I IFN cascade in human myeloid cells and reveal a new role for human PYHINs in innate immune gene induction.

Sign in / Sign up

Export Citation Format

Share Document