scholarly journals Single-particle cryo-electron microscopy of Rift Valley fever virus

Virology ◽  
2009 ◽  
Vol 387 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Michael B. Sherman ◽  
Alexander N. Freiberg ◽  
Michael R. Holbrook ◽  
Stanley J. Watowich
2016 ◽  
Vol 30 (S1) ◽  
Author(s):  
Anne Sally Davis ◽  
Natasha N Gaudreault ◽  
Haixia Liu ◽  
Tammy Koopman ◽  
Juergen A Richt ◽  
...  

Virology ◽  
1963 ◽  
Vol 20 (3) ◽  
pp. 530-533 ◽  
Author(s):  
Julia Levitt ◽  
W.du T. Naudé ◽  
A. Polson

2009 ◽  
Vol 83 (8) ◽  
pp. 3762-3769 ◽  
Author(s):  
Juha T. Huiskonen ◽  
Anna K. Överby ◽  
Friedemann Weber ◽  
Kay Grünewald

ABSTRACT Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It is a mosquito-borne zoonotic agent that can cause hemorrhagic fever in humans. The enveloped RVFV virions are known to be covered by capsomers of the glycoproteins GN and GC, organized on a T=12 icosahedral lattice. However, the structural units forming the RVFV capsomers have not been determined. Conflicting biochemical results for another phlebovirus (Uukuniemi virus) have indicated the existence of either GN and GC homodimers or GN-GC heterodimers in virions. Here, we have studied the structure of RVFV using electron cryo-microscopy combined with three-dimensional reconstruction and single-particle averaging. The reconstruction at 2.2-nm resolution revealed the organization of the glycoprotein shell, the lipid bilayer, and a layer of ribonucleoprotein (RNP). Five- and six-coordinated capsomers are formed by the same basic structural unit. Molecular-mass measurements suggest a GN-GC heterodimer as the most likely candidate for this structural unit. Both leaflets of the lipid bilayer were discernible, and the glycoprotein transmembrane densities were seen to modulate the curvature of the lipid bilayer. RNP densities were situated directly underneath the transmembrane densities, suggesting an interaction between the glycoprotein cytoplasmic tails and the RNPs. The success of the single-particle averaging approach taken in this study suggests that it is applicable in the study of other phleboviruses, as well, enabling higher-resolution description of these medically important pathogens.


1950 ◽  
Vol 5 (5) ◽  
pp. 243-247
Author(s):  
Minoru MATSUMOTO ◽  
Saburo IWASA ◽  
Motosige ENDO

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128215 ◽  
Author(s):  
Nazly Shafagati ◽  
Lindsay Lundberg ◽  
Alan Baer ◽  
Alexis Patanarut ◽  
Katherine Fite ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Halima Rhazi ◽  
Najete Safini ◽  
Karima Mikou ◽  
Meryeme Alhyane ◽  
Khalid Omari Tadlaoui ◽  
...  

Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Sign in / Sign up

Export Citation Format

Share Document