Time-Frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds

2019 ◽  
Vol 128 ◽  
pp. 93-109 ◽  
Author(s):  
Zhipeng Feng ◽  
Wenying Zhu ◽  
Dong Zhang
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaowang Chen ◽  
Zhipeng Feng

Wind turbine planetary gearboxes often run under nonstationary conditions due to volatile wind conditions, thus resulting in nonstationary vibration signals. Time-frequency analysis gives insight into the structure of an arbitrary nonstationary signal in joint time-frequency domain, but conventional time-frequency representations suffer from either time-frequency smearing or cross-term interferences. Reassigned wavelet scalogram has merits of fine time-frequency resolution and cross-term free nature but has very limited applications in machinery fault diagnosis. In this paper, we use reassigned wavelet scalogram to extract fault feature from wind turbine planetary gearbox vibration signals. Both experimental and in situ vibration signals are used to evaluate the effectiveness of reassigned wavelet scalogram in fault diagnosis of wind turbine planetary gearbox. For experimental evaluation, the gear characteristic instantaneous frequency curves on time-frequency plane are clearly pinpointed in both local and distributed sun gear fault cases. For in situ evaluation, the periodical impulses due to planet gear fault are also clearly identified. The results verify the feasibility and effectiveness of reassigned wavelet scalogram in planetary gearbox fault diagnosis under nonstationary conditions.


Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


Author(s):  
Xiaoli Xu ◽  
Xiuli Liu

With the development of information theory and image analysis theory, the studies on fault diagnosis methods based on image processing have become a hot spot in the recent years in the field of fault diagnosis. The gearbox of wind turbine generator is a fault-prone subassembly. Its time frequency of vibration signals contains abundant status information, so this paper proposes a fault diagnosis method based on time-frequency image characteristic extraction and artificial immune algorithm. Firstly, obtain the time-frequency image using wavelet transform based on threshold denoising. Secondly, acquire time-frequency image characteristics by means of Hu invariant moment and correlation fusion gray-level co-occurrence matrix of characteristic value, thus, to extract the fault information of the gearing of wind turbine generator. Lastly, diagnose the fault type using the improved actual-value negative selection algorithm. The application of this method in the gear fault diagnosis on the test bed of wind turbine step-up gearbox proves that it is effective in the improvement of diagnosis accuracy.


Sign in / Sign up

Export Citation Format

Share Document