scholarly journals Fault Diagnosis in Wind Turbine Planetary Gearbox Using Vibration Time-Frequency Analysis Technique

2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Shawki A. Abouel-Seoud ◽  
Mohamed Abdel-Hafiz ◽  
Ahmed Abdallah ◽  
Mohamed Mansy
Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


Author(s):  
Yue Hu ◽  
Xiaotong Tu ◽  
Fucai Li

The planetary gearbox is one of the key components in the rotating machinery. The planetary gearbox is prone to malfunction, which increases downtime and repair costs. Hence, the fault diagnosis of the planetary gearbox is an important research topic. The acquired signal from the planetary gearbox exhibit strongly time-variant and nonstationary features since the planetary gearbox usually works at time-varying speeds. In this study, a new time-frequency analysis method is proposed. This method takes the spectrum shape into account and partitions the time-frequency into several components. Then the fault feature of the planetary gearbox is detected by analyzing the decomposed components. The simulated signal and the experimental signals under nonstationary conditions are analyzed to verify the effectiveness the proposed method. Results show that the proposed method can efficiently extract the fault feature of the planet gear.


2013 ◽  
Vol 798-799 ◽  
pp. 561-564
Author(s):  
Ji Yu Zhou ◽  
Feng Dao Zhou

Sea is rich in oil and gas resources, the marine controlled source electromagnetic method (CSEM) is a kind of method seabed oil gas geophysical technology rising in recent years. Because of the problem of CSEM about the air wave in the shallow water, the research of time-frequnecy analysis technique is used to suppress the air wave in this paper. The basic idea is: because of the CSEM signals speed are different in the air and submarine, so the time which received by the receiving points are also different through these two kinds of ways. Using the time-frequency analysis technique and theoretical calculation, we can determine which part of the signal is spread over the ocean, so as to suppress the air wave effectively. This paper lists several methods of time-frequency analysis, such as Short-time Fourier transform, W-V distribution, Wavelet transform, Hilbert Huang transform. Through the time-frequency graph,we get the conclusion that HHT is better than others in concentration degree,and W-V distribution is better than STFT.Compared with the original signal, the time-frequency graph is the best in using Smooth Puseudo W-V Distribution.I have a detailed analysis about real case in using SPWVD at last.


Sign in / Sign up

Export Citation Format

Share Document