vibration signals
Recently Published Documents


TOTAL DOCUMENTS

1623
(FIVE YEARS 545)

H-INDEX

53
(FIVE YEARS 10)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 119
Author(s):  
Gang Mao ◽  
Zhongzheng Zhang ◽  
Bin Qiao ◽  
Yongbo Li

The vibration signal of gearboxes contains abundant fault information, which can be used for condition monitoring. However, vibration signal is ineffective for some non-structural failures. In order to resolve this dilemma, infrared thermal images are introduced to combine with vibration signals via fusion domain-adaptation convolutional neural network (FDACNN), which can diagnose both structural and non-structural failures under various working conditions. First, the measured raw signals are converted into frequency and squared envelope spectrum to characterize the health states of the gearbox. Second, the sequences of the frequency and squared envelope spectrum are arranged into two-dimensional format, which are combined with infrared thermal images to form fusion data. Finally, the adversarial network is introduced to realize the state recognition of structural and non-structural faults in the unlabeled target domain. An experiment of gearbox test rigs was used for effectiveness validation by measuring both vibration and infrared thermal images. The results suggest that the proposed FDACNN method performs best in cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data compared with the other four methods.


Author(s):  
Canyi Du ◽  
Xinyu Zhang ◽  
Rui Zhong ◽  
Feng Li ◽  
Feifei Yu ◽  
...  

Abstract Aiming at the possible mechanical faults of UAV rotor in the working process, this paper proposes a UAV rotor fault identification method based on interval sampling reconstruction of vibration signals and one-dimensional convolutional neural network (1D-CNN) deep learning. Firstly, experiments were designed to collect the vibration acceleration signals of UAV working at high speed under three states (normal, rotor damage by varying degrees, and rotor crack by different degrees). Then considering the powerful feature extraction and complex data analysis abilities of 1D-CNN, an effective deep learning model for fault identification is established utilizing 1D-CNN. During analysis, it is found that the recognition effect of minor faults is not ideal, which causes by all states were identified as normal and then reduces the overall identification accuracy, when using conventional sequential sampling to construct learning. To this end, in order to make the sample data cover the whole process of data collection as much as possible, a learning sample processing method based on interval sampling reconstruction of vibration signal is proposed. And it is also verified that the sample set reconstructed can easily reflect the global information of mechanical operation. Finally, according to the comparison of analysis results, the recognition rate of deep learning model for different degrees of faults is greatly improved, and minor faults could also be accurately identified, through this method. The results show that, the 1D-CNN deep learning model, could diagnose and identify UAV rotor damage faults accurately, by combing the proposed method of interval sampling reconstruction.


Eos ◽  
2022 ◽  
Author(s):  
Yingping Li ◽  
Martin Karrenbach ◽  

A new book explores Distributed Acoustic Sensing, a technology with a range of applications across geophysics and related fields.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


2022 ◽  
Vol 36 (06) ◽  
Author(s):  
HUNGLINH AO ◽  
THANHHANG NGUYEN ◽  
V.HO HUU ◽  
TRANGTHAO NGUYEN

SVM parameters have serious effects on the accuracy rate of classification result. Tuning SVM parameters is always a challenge for scientists. In this paper, a SVM parameter optimization method based on Adaptive Elitist Differential Evolution (AeDE-SVM) is proposed. Furthermore, AeDE-SVM is applied to diagnose roller bearing fault by using complementary ensemble empirical mode decomposition (CEEMD) and singular value decomposition (SVD) techniques. First, original acceleration vibration signals are decomposed into Intrinsic Mode Function (IMFs) by using CEEMD method. Second, initial feature matrices are extracted from (IMFs) by singular value decomposition (SVD) techniques to obtain single values. Third, these values serve as input vector for AeDE-SVM classifier. The results show that the combination of AeDE-SVM classifiers and the CEEMD-SVD method obtains higher classification accuracy and lower cost time compared to other methods. In this paper, the roller bearing vibration signals were used to evaluate the proposed method. The experimental results showed that the superior performance compared to other SVM parameter optimization techniques and successfully recognized different fault types of roller bearing during its operation.


Sign in / Sign up

Export Citation Format

Share Document