Asymptotic bounds on overall moduli of cracked bodies

2000 ◽  
Vol 37 (43) ◽  
pp. 6221-6237 ◽  
Author(s):  
J. Wang ◽  
J. Fang ◽  
B.L. Karihaloo
Keyword(s):  
2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


2005 ◽  
Vol 25 (4) ◽  
pp. 1209-1220 ◽  
Author(s):  
MIKHAIL G. KATZ ◽  
STÉPHANE SABOURAU
Keyword(s):  

2013 ◽  
Vol 16 ◽  
pp. 78-108 ◽  
Author(s):  
Andrew R. Booker ◽  
Andreas Strömbergsson ◽  
Holger Then

AbstractUsing the paths of steepest descent, we prove precise bounds with numerical implied constants for the modified Bessel function${K}_{ir} (x)$of imaginary order and its first two derivatives with respect to the order. We also prove precise asymptotic bounds on more general (mixed) derivatives without working out numerical implied constants. Moreover, we present an absolutely and rapidly convergent series for the computation of${K}_{ir} (x)$and its derivatives, as well as a formula based on Fourier interpolation for computing with many values of$r$. Finally, we have implemented a subset of these features in a software library for fast and rigorous computation of${K}_{ir} (x)$.


Author(s):  
V. M. Kutuzov ◽  
M. A. Ovchinnikov ◽  
E. A. Vinogradov

Introduction. In the case of a nonuniform (NU) design of the antenna elements (AEs) of the receiving antenna array (AA), the antenna pattern (AP) features sidelobes (SL) with a significantly higher noise level than acceptable values. Under low signal-to-noise ratios (SNR), this noise leads to angular coordinate measuring errors thus worsening the statistical accuracy characteristics (ACs) of the signal. It is of relevance to construct the ACs of angular coordinates when a modified parametric Burg method (BM) is applied to spatial reflected signal processing in a transportable decametre range radar (DRR) with a nonuniform array (NUA) and linear accuracy characteristics. Aim. To analyse the statistical ACs of angular coordinate objects when using a modified BM for spatial reflected signal processing in a DRR with a linear NUA, in which AEs are located with a random step in the range from λ/2 to several λ, where λ is the operating carrier wavelength.Materials and methods. Statistical ACs were constructed by computer modelling in the MatLab software, the reliability of which was confirmed by conventional discrete Fourier transform methods, as well as by comparing the obtained ACs with asymptotic bounds, including Cramer-Rao bounds.Results. The possibility and conditions of using a modified parametric BM for estimating the azimuthal coordinates of reflected radar signals were determined for the case of a nonuniform design of the over-the-horizon DRR receiving AA AEs. Statistical ACs were obtained and compared with the asymptotically optimal ACs of the maximum likelihood estimations corresponding to the uniform AE design.Conclusion. The obtained results confirm the suboptimality of the BM modified for signal processing in the NUA at a random AE spacing step in the range from λ/2 to 2λ, making it applicable for use in transportable DRRs.


Sign in / Sign up

Export Citation Format

Share Document