Journal of the Russian Universities Radioelectronics
Latest Publications


TOTAL DOCUMENTS

198
(FIVE YEARS 155)

H-INDEX

2
(FIVE YEARS 1)

Published By St. Petersburg Electrotechnical University Leti

1993-8985

Author(s):  
S. Yu. Shevchenko ◽  
D. A. Mikhailenko ◽  
B. Nyamweru

Introduction. Previous works considered the frequency characteristics and methods for fixing sensitive elements in the form of a wave ring resonator on surface acoustic waves in a housing made of various materials, as well as the influence of external factors on sensitive elements. It was found that the passband in such a case is sufficiently wide, which can affect adversely signal detection when measuring acceleration using the sensitive element under development. Therefore, it has become relevant to reduce the sensitive element’s bandwidth by changing the design of the interdigitated transducer (IDT).Aim. To demonstrate an optimal topology for an IDT with a low bandwidth, leading to improved signal detection when acceleration affects the sensitive element.Materials and methods. The finite element method and mathematical processing in AutoCAD and in COMSOL Multiphysics.Results. Nine topologies of IDT are proposed. All these types were investigated using the COMSOL Multiphysics software on lithium niobate substrates, which material acts as a sensitive element. The frequency characteristics are presented. The data obtained allowed an optimal design of the ring resonator to be proposed: an IDT with rectangular pins without selective withdrawal.Conclusion. Self-generation in a ring resonator can be performed by withdrawing no more than one pair of IDTs for 10 or more periods. In this case, the withdrawal of IDTs should be uniform. With an increase in the number of IDT withdrawals, the geometry of the ring resonator is violated, and the wave leaves the structure. The presence of a shared bus keeps the surface acoustic wave inside the IDT structure, and the narrowing of the periods towards the inner part of the structure makes it possible to improve the frequency characteristics of the ring resonator on surface acoustic waves.


Author(s):  
K. A. Boikov

Introduction. Technical diagnostics (TD) as a nascent discipline is rapidly developing in the field of both software and hardware. Modern TD methods, such as vibrometry, thermal control, JTAG testing and optical control, either exhibit high inertia, consume processor time, require suspension of the electronic device, or demand a galvanic contact with the study object, which is often unacceptable. These disadvantages can be eliminated by passive radio-sensor TD. To date, little information has been published on the parameters of electronic devices provided by this method.Aim. Determination of the parameters of electronic devices, the assessment of which can be provided by passive radio-sensor TD.Materials and methods. Signal radio profiles were obtained experimentally using metrological equipment and software-numerical methods for modeling radio wave processes. The parameters of the signal radio profile were calculated by a mathematical method for solving differential equations.Results. The main principles and results of radio-sensor TD, as well as the simplest toolkit, are shown. An equation is obtained for the signal radio profile emitted by the electronic unit of the device, as well as an expression for its free components. An approach for assessing the TD correctness based on the number of free components of the received signal radio profile and the reference is described. The possibility of obtaining information about temperature, voltage drop, speed of emitting nodes, as well as the state of its components and modes of operation of p–njunctions is demonstrated. It is shown that this information is carried by the parameters of the basic equation for the signal radio profile.Conclusion. The derived basic equation allows a non-contact, remote passive radio-sensor TD to be conducted by correlation analysis of the received signal, providing a detailed examination of malfunctions in each electronic unit. The described TD method based on the presented parameters is promising for assessing the technical state of electronic devices.


Author(s):  
I. V. Pospelova ◽  
I. V. Cherepanova ◽  
D. S. Bragin ◽  
V. N. Serebryakova

Introduction. The development of telemedicine systems intended to remotely monitor the health status of patients constitutes one of the most promising areas of contemporary science. Particularly relevant is the use of such systems to track the health of surgically treated patients. Since such patients are mobile, sensors measuring vital signs should not cause any discomfort in regular use. Thus, wearable smart trackers can be used for these purposes.Aim. The paper aims to study the possibility of using smart trackers in a telemedicine system for monitoring patient health.Materials and methods. In the study, a series of measurements was performed using GSMIN WR 41 smart bracelets in order to estimate their accuracy when measuring pulse, blood pressure, and oxygen saturation for different research subjects at rest and during intense physical exercises. In addition, the average measurement interval of the smart bracelet was determined; the operation of the smart bracelet in the telemedicine system for monitoring vital signs was considered.Results. The studies show that an average error in the measurement of vital signs (except for systolic pressure) using the smart bracelet does not exceed 10 %. In order to avoid the high error in measuring systolic pressure, an algorithm for assessing the general health of patients was developed. In addition, it is shown that the smart bracelet can detect an abrupt change in the vital signs of patients, with the average time of their measurement and data transmission to the server of the telemedicine system coming to 45 seconds.Conclusion. The study results indicate that smart bracelets can be used to remotely monitor the health of patients in real-time. These findings are confirmed by the telemedicine system designed on the basis of the smart bracelets considered in the paper.


Author(s):  
A. A. Golovkov ◽  
A. V. Fomin

Introduction. The ability to analytically determine some parameters of various radio devices, which are optimal according to the criterion of providing the set values of the modules and phases of transfer functions at the required number of frequencies, significantly reduces the time for numerical optimization of the rest of the parameters according to the criterion of forming the required frequency response and frequency response in the frequency band. Until now, such problems with respect to radio devices have been solved only for one stage of the "nonlinear part – matching device" or "matching device – nonlinear part" type. As a matching device, reactive, resistive, complex, or mixed quad-poles were used.Aim. Development of algorithms for parametric synthesis of radio devices with an arbitrary number of identical cascades of the "nonlinear part – matching reactive quadrupole" type according to the criterion of ensuring the specified frequency characteristics. Non-linear parts are represented as a non-linear element and parallel or serial current or voltage feedback.Materials and methods. Four-pole theory, matrix algebra, decomposition method, method of synthesis of microwave control devices, numerical optimization methods.Results. Systems of algebraic equations are formed and solved. Models of optimal quadrupole conductors are obtained in the form of mathematical expressions for determining the relationships between the elements of their classical transmission matrix and for finding the frequency dependences of the resistances of two-pole conductors.Conclusion. It is shown that the frequency characteristics of the studied radio devices from the same stages are identical or similar to the frequency characteristics of radio devices from the same stage, but with the signal source and load resistances changed in a certain way. Such schemes are called equivalent. A comparative analysis of the theoretical results (frequency response and frequency response of radio devices) obtained by mathematical modeling in the "MathCad" system, and the experimental results obtained by circuit modeling in the "OrCAD" and "MicroCap" systems, shows their satisfactory agreement.


Author(s):  
R. R. Abenov ◽  
E. V. Rogozhnikov ◽  
Ya. V. Kryukov ◽  
D. A. Pokamestov ◽  
P. A. Abenova

Introduction. This paper investigates a transmission system based on FBMC/OQAM multiplexing. This system is characterized by a high spectral efficiency, thereby attracting interest as an alternative transmission method in future wireless mobile communication standards. However, a disadvantage of the system is the high complexity of signal processing. There are numerous publications that study the FBMC/OQAM system from a theoretical perspective. This paper presents an experimental study of a transmission system based on FBMC/OQAM.Aim. Verification of a transmission system based on FBMC/OQAM multiplexing in a wireless channel.Materials and methods. Computer simulation modeling in Matlab and experimental research using Keysight and Rohde & Schwarz certified measuring instruments.Results. A model of synthesis and signal processing was developed, and a frame structure was proposed. The processing included synchronization, since the study was carried out in a wireless double-dispersive channel. Time synchronization was provided by the method of time-domain correlation. A preamble consisting of two symbols was used for CFO compensation. Channel estimation in FBMC/OQAM was conducted by pilot symbols spread over the time-frequency domain, a method with an auxiliary pilot to compensate for intrinsic interference, as well as Zero Forcing and a linear interpolator. As a result, dependences of the bit error rate on the Eb/N0 in various channels were obtained. An error rate of 10−4 was achieved under the Eb/N0 equal to 13.4 dB, 15.3 dB and 20.9 dB in the first, second and third channel, respectively.Conclusion. A FBMC/OQAM-based transmission system with a linear equalizer can operate without a cyclic prefix in a multipath wireless channel, providing comparable noise immunity to OFDM-CP. Long frames should be used to obtain greater spectral efficiency, due to the presence of a transition zone at the beginning and end of the FBMC/OQAM frame.


Author(s):  
S. R. Heister ◽  
V. V. Kirichenko

Introduction. The digital representation of received radar signals has provided a wide range of opportunities for their processing. However, the used hardware and software impose some limits on the number of bits and sampling rate of the signal at all conversion and processing stages. These limitations lead to a decrease in the signal-to-interference ratio due to quantization noise introduced by powerful components comprising the received signal (interfering reflections; active noise interference), as well as the attenuation of a low-power reflected signal represented by a limited number of bits. In practice, the amplitude of interfering reflections can exceed that of the signal reflected from the target by a factor of thousands.Aim. In this connection, it is essential to take into account the effect of quantization noise on the signal-tointerference ratio.Materials and methods. The article presents expressions for calculating the power and power spectral density (PSD) of quantization noise, which take into account the value of the least significant bit of an analog-to-digital converter (ADC) and the signal sampling rate. These expressions are verified by simulating 4-, 8- and 16-bit ADCs in the Mathcad environment.Results. Expressions are derived for calculating the quantization noise PSD of interfering reflections, which allows the PSD to be taken into account in the signal-to-interference ratio at the output of the processing chain. In addition, a comparison of decimation options (by discarding and averaging samples) is performed drawing on the estimates of the noise PSD and the signal-to-noise ratio.Conclusion. Recommendations regarding the ADC bit depth and sampling rate for the radar receiver are presented.


Author(s):  
F. B. Musaev ◽  
S. L. Beletskiy

Introduction. X-ray analysis has been applied for visualizing the internal structure of various objects for over 100 years. However, this method began to be used for assessing the quality of plant seeds only in the early 1980s. The main impediment was a lack of specialized instruments, particularly X-ray sources, that could provide informative images. Advancements in the field of microfocus radiography allowed significant results to be achieved, including the preparation of the National Standard GOST R 596032021 "Agricultural Seeds. Methods of digital radiography".Aim. An analytical review of Russian research studies in the field of X-ray diffraction analysis of plant seeds.Materials and methods. Key stages in the development of microfocus X-ray diffraction analysis of seeds and individual parts of plants for agricultural and other purposes are considered. The design of instruments, including digital ones, created for the implementation of the method are described.Results. In order to obtain informative X-ray diffraction images of plant seeds, which objects are generally characterized by small sizes and small density, the focal spot of the X-ray tube should not exceed several tens of microns under the voltage of not higher than several tens of kilovolts. As a system for visualizing a latent X-ray image, it is preferable to use image receivers based on a screen with a photostimulated phosphor or flat-panel solid-state X-ray detectors. These instruments have been successfully used to identify and describe the radiographic signs of a normal seed and nine main types of defects for 600 plant species.Conclusion. In comparison with the conventional contact radiography, microfocus radiography produces X-ray images of seeds with a projection magnification of the image up to several tens of times. Such images permit highly detailed visualization of the structure of seeds that differ slightly in density.


2021 ◽  
Vol 24 (5) ◽  
pp. 89-101
Author(s):  
A. S. Shirokanev

Introduction. Diabetes mellitus is a common endocrine disease that can lead to retinal vascular damage caused by the spread of macular edema and the development of diabetic retinopathy. Currently, diabetic retinopathy is treated using retinal laser coagulation. However, since even modern systems do not demonstrate sufficient treatment efficacy, methods for providing laser coagulation support on the basis of patient data analysis are required.Aim. This paper aims to develop and study a method for estimating a safe distance between coagulates via the mathematical modeling of coagulation in order to provide laser coagulation support.Materials and methods. The problem of thermal conductivity is numerically modeled for laser action in a multilayer medium.Results. A method for estimating a safe distance between coagulates has been developed via the mathematical modeling of the thermal conductivity problem. An algorithm was established for reconstructing a three-dimensional fundus structure from OCT images. It was demonstrated that the convergence rate of the integro-interpolation method is higher than that of the finite difference method. The study revealed that the retina heats up to 45 ºС due to heat redistribution from the epithelial layer, as well as laser exposure. According to the study results, the developed method yields a safe distance of 180 µm. By increasing the delay between laser pulses by more than 10 ms, this distance can be reduced to 160 μm.Conclusion. The developed method can calculate distance corresponding to that used in medical practice. Besides safe distance, the use of this method will allow other laser coagulation parameters to be determined non-invasively: laser power and pulse duration recommended to achieve a therapeutic effect. These estimates can be used to automatically produce a preliminary laser coagulation plan to support diabetic retinopathy treatment.


Author(s):  
V. B. Bessonov

Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.


Author(s):  
I. F. Kupryashkin ◽  
K. Yu. Zavodskyh

Introduction. Computer-aided design systems for microwave devices are an effective tool for assessing the backscattering characteristics of complex-shaped objects. However, these calculations are often associated with significant computational costs, especially at large values of the ratio of the characteristic dimensions of the object to the wavelength. The use of asymptotic methods in combination with the mesh coarsening of object partition can significantly reduce these costs. However, in each practical case, this leads to a deterioration in the accuracy of the estimates obtained, which is hard to predict.Aim. Comparative assessment of the results of modeling the scattering field in the CAD of microwave devices using various methods for calculating and detailing the object model in the decimeter and centimeter wavelength ranges.Materials and methods. The research object was an anti-tank guided missile FGM-148 Javelin. The scattering field of Altair FEKO microwave devices was modeled in CAD using the methods of moments and physical optics in the frequency range from 1 to 10 GHz and angles from 0 to 180°. A comparison of one-dimensional backscatter diagrams and radar images obtained using these methods was carried out.Results. For the class of objects under consideration, the method of physical optics provides acceptable accuracy at frequencies of 5 GHz and higher with a step of partitioning the model surface of the order of one centimeter and a total calculation duration of the order of several minutes (Intel Core i5-4460 PC / 3.2 GHz / 8 MB RAM). At lower frequencies, acceptable accuracy and a similar calculation duration are achieved when calculating by the method of moments and a partitioning step of about 20 cm. The possibility of using the Altair FEKO CAD system for modeling radar images of objects with a resolution of at least 20 cm is demonstrated.Conclusion. The results obtained complement the well-known studies in the field of comparative assessment of the time and accuracy characteristics of various methods for calculating the scattering field of objects in the CAD of microwave devices.


Sign in / Sign up

Export Citation Format

Share Document