scholarly journals Phosphorylation of synthetic peptide analogs of rabbit cardiac troponin inhibitory subunit by the cyclic AMP-dependent protein kinase.

1979 ◽  
Vol 254 (8) ◽  
pp. 2638-2642
Author(s):  
B.E. Kemp
1975 ◽  
Vol 149 (3) ◽  
pp. 525-533 ◽  
Author(s):  
H A Cole ◽  
S V Perry

1. Troponin I isolated from fresh cardiac muscle by affinity chromatography contains about 1.9 mol of covalently bound phosphate/mol. Similar preparations of white-skeletal-muscle troponin I contain about 0.5 mol of phosphate/mol. 2. A 3':5'-cyclic AMP-dependent protein kinase and a protein phosphatase are associated with troponin isolated from cardiac muscle. 3. Bovine cardiac 3':5'-cyclic AMP-dependent protein kinase catalyses the phosphorylation of cardiac troponin I 30 times faster than white-skeletal-muscle troponin I. 4. Troponin I is the only component of cardiac troponin phosphorylated at a significant rate by the endogenous or a bovine cardiac 3':5'-cyclic AMP-dependent protein kinase. 5. Phosphorylase kinase catalyses the phosphorylation of cardiac troponin I at similar or slightly faster rates than white-skeletal-muscle troponin I. 6. Troponin C inhibits the phosphorylation of cardiac and skeletal troponin I catalysed by phosphorylase kinase and the phosphorylation of white skeletal troponin I catalysed by 3':5'-cyclic AMP-dependent protein kinase; the phosphorylation of cardiac troponin I catalysed by the latter enzyme is not inhibited.


FEBS Letters ◽  
1987 ◽  
Vol 224 (2) ◽  
pp. 325-330 ◽  
Author(s):  
Gillian M. Olins ◽  
Pramod P. Mehta ◽  
Delores J. Blehm ◽  
Dennis R. Patton ◽  
Mark E. Zupec ◽  
...  

1992 ◽  
Vol 287 (3) ◽  
pp. 791-795 ◽  
Author(s):  
E A Carrey

The multienzyme polypeptide CAD is phosphorylated at two sites by cyclic AMP (cAMP)-dependent protein kinase. Site 2 has two interesting features: it is located in a ‘linking region’ between two discretely folded enzyme domains, and a histidine, instead of the more usual arginine, is found three positions N-terminal to the phosphorylated serine. A synthetic peptide corresponding to the sequence around site 2 has an extended or random structure in solution, and the proton n.m.r. chemical shift of the histidine residues can be titrated against pH in the range 6.0-8.0. The peptide is phosphorylated more rapidly by cAMP-dependent protein kinase at lower pH values, indicating that the protonated histidine side chain corresponds to the arginine in the consensus recognition sequence for the kinase. Kemptide, a specific synthetic substrate for the kinase, was phosphorylated with a higher affinity and at a similar rate at all pH values. CAD was a better substrate than the synthetic peptide, and labelling was not affected by the pH of the incubation conditions. The results indicate that the phosphorylation site in the interdomain linker is sufficiently exposed to the solvent to ensure accessibility to the kinase, but that secondary or tertiary structure in the intact protein allows the histidine residue to remain protonated at physiological pH and enhances recognition of the phosphorylatable serine residue.


1988 ◽  
Vol 16 (3) ◽  
pp. 355-355 ◽  
Author(s):  
KENNETH J. MURRAY ◽  
PAUL J. ENGLAND ◽  
JAMES A. LYNHAM ◽  
DAVID MILLS ◽  
MARTIN L. REEVES

1983 ◽  
Vol 213 (1) ◽  
pp. 159-164 ◽  
Author(s):  
D B Glass

The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.


1984 ◽  
Vol 218 (2) ◽  
pp. 361-369 ◽  
Author(s):  
G J Mazzei ◽  
J F Kuo

Skeletal-muscle troponin I and troponin T were found to be rapidly phosphorylated by cardiac phospholipid-sensitive Ca2+-dependent protein kinase, with Km values of 6.66 and 0.13 microM respectively. Stoichiometric phosphorylation of skeletal troponin I (endogenous phosphate content 0.7 mol/mol) indicated that the Ca2+-dependent enzyme and cyclic AMP-dependent protein kinase incorporated 0.9 and 0.8 mol/mol respectively. The same experiments with skeletal troponin T (endogenous phosphate content 1.9 mol/mol) revealed a maximal phosphorylation of 2 mol/mol by the Ca2+-dependent enzyme, whereas the cyclic AMP-dependent enzyme was unable to phosphorylate troponin T. The Ca2+-dependent enzyme phosphorylated both serine and threonine residues in skeletal and cardiac troponin I or troponin T; the cyclic AMP-dependent enzyme, in comparison, phosphorylated only serine in skeletal and cardiac troponin I. Although an equimolar amount of skeletal or cardiac troponin C markedly inhibited (80-90%) phosphorylation of skeletal and cardiac troponin I by the Ca2+-dependent enzyme, these troponin C preparations inhibited only phosphorylation of skeletal troponin I, but not that of cardiac troponin I, by the cyclic AMP-dependent enzyme. Calmodulin and Ca2+-binding protein S-100a could mimic the inhibitory effect of troponin C. A tissue specificity appeared to exist for the skeletal troponin T-skeletal troponin C interaction. Inhibition of troponin T phosphorylation by an equimolar amount of troponin C was lower than that of troponin I phosphorylation; these findings might explain in part why troponin T was the major substrate for the Ca2+-dependent enzyme in the troponin complex. The present studies indicate that skeletal and cardiac troponin I and troponin T were effective substrates for phospholipid-sensitive Ca2+-dependent protein kinase, suggesting a potential involvement of this Ca2+-effector enzyme in the regulation of myofibrillar activity.


Sign in / Sign up

Export Citation Format

Share Document