scholarly journals An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication.

1993 ◽  
Vol 268 (5) ◽  
pp. 3389-3395
Author(s):  
T. Melendy ◽  
B. Stillman
2004 ◽  
Vol 78 (4) ◽  
pp. 1605-1615 ◽  
Author(s):  
Yueh-Ming Loo ◽  
Thomas Melendy

ABSTRACT With the exception of viral proteins E1 and E2, papillomaviruses depend heavily on host replication machinery for replication of their viral genome. E1 and E2 are known to recruit many of the necessary cellular replication factors to the viral origin of replication. Previously, we reported a physical interaction between E1 and the major human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA). E1 was determined to bind to the 70-kDa subunit of RPA, RPA70. In this study, using E1-affinity coprecipitation and enzyme-linked immunosorbent assay-based interaction assays, we show that E1 interacts with the major ssDNA-binding domain of RPA. Consistent with our previous report, no measurable interaction between E1 and the two smaller subunits of RPA was detected. The interaction of E1 with RPA was substantially inhibited by ssDNA. The extent of this inhibition was dependent on the length of the DNA. A 31-nucleotide (nt) oligonucleotide strongly inhibited the E1-RPA interaction, while a 16-nt oligonucleotide showed an intermediate level of inhibition. In contrast, a 10-nt oligonucleotide showed no observable effect on the E1-RPA interaction. This inhibition was not dependent on the sequence of the DNA. Furthermore, ssDNA also inhibited the interaction of RPA with papillomavirus E2, simian virus 40 T antigen, human polymerase alpha-primase, and p53. Taken together, our results suggest a potential role for ssDNA in modulating RPA-protein interactions, in particular, the RPA-E1 interactions during papillomavirus DNA replication. A model for recruitment of RPA by E1 during papillomavirus DNA replication is proposed.


FEBS Letters ◽  
2007 ◽  
Vol 581 (21) ◽  
pp. 3973-3978 ◽  
Author(s):  
Poonam Taneja ◽  
Irene Boche ◽  
Hella Hartmann ◽  
Heinz-Peter Nasheuer ◽  
Frank Grosse ◽  
...  

2020 ◽  
Vol 48 (7) ◽  
pp. 3657-3677 ◽  
Author(s):  
Nichodemus O Onwubiko ◽  
Angela Borst ◽  
Suraya A Diaz ◽  
Katharina Passkowski ◽  
Felicia Scheffel ◽  
...  

Abstract DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10–30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.


1997 ◽  
Vol 17 (7) ◽  
pp. 3876-3883 ◽  
Author(s):  
C Iftode ◽  
J A Borowiec

The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.


1992 ◽  
Vol 11 (2) ◽  
pp. 769-776 ◽  
Author(s):  
I. Dornreiter ◽  
L.F. Erdile ◽  
I.U. Gilbert ◽  
D. von Winkler ◽  
T.J. Kelly ◽  
...  

2000 ◽  
Vol 275 (2) ◽  
pp. 1391-1397 ◽  
Author(s):  
Jen-Sing Liu ◽  
Shu-Ru Kuo ◽  
Mary M. McHugh ◽  
Terry A. Beerman ◽  
Thomas Melendy

1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


Sign in / Sign up

Export Citation Format

Share Document