replication initiation
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 187)

H-INDEX

69
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Yaqun Liu ◽  
Xia Wu ◽  
Yves D'aubenton-Carafa ◽  
Claude Thermes ◽  
Chun-Long Chen

Motivation: During each cell division, tens of thousands of DNA replication origins are coordinately activated to ensure the complete duplication of the entire human genome. However, the progression of replication forks can be challenged by numerous factors. One such factor is transcription-replication conflicts (TRC), which can either be co-directional or head-on with the latter being revealed as more dangerous for genome integrity. Results: In order to study the direction of replication fork movement and TRC, we developed a bioinformatics tool, called OKseqHMM, to directly measure the genome-wide replication fork directionality (RFD) as well as replication initiation and termination from data obtained by Okazaki fragment sequencing (OK-Seq) and related techniques. Availability and Implementation: We have gathered and analyzed OK-seq data from a large number of organisms including yeast, mouse and human, to generate high-quality RFD profiles and determine initiation zones and termination zones by using Hidden Markov Model (HMM) algorithm (all tools and data are available at https://github.com/CL-CHEN-Lab/OK-Seq). In addition, we have extended our analysis to data obtained by related techniques, such as eSPAN and TrAEL-seq, which also contain RFD information. Our works, therefore, provide an important tool and resource for the community to further study TRC and genome instability, in a wide range of cell line models and growth conditions, which is of prime importance for human health.


2021 ◽  
Author(s):  
David M Roberts ◽  
Anna Anchimiuk ◽  
Tomas G Kloosterman ◽  
Heath Murray ◽  
Ling Juan Wu ◽  
...  

SMC complexes, loaded at ParB-parS sites, are key mediators of chromosome organization in bacteria. ParA/Soj proteins interact with ParB/Spo0J in a pathway involving ATP-dependent dimerization and DNA binding, leading to chromosome segregation and SMC loading. In Bacillus subtilis, ParA/Soj also regulates DNA replication initiation, and along with ParB/Spo0J is involved in cell cycle changes during endospore formation. The first morphological stage in sporulation is the formation of an elongated chromosome structure called an axial filament. We now show that a major redistribution of SMC complexes drives axial filament formation, in a process regulated by ParA/Soj. Unexpectedly, this regulation is dependent on monomeric forms of ParA/Soj that cannot bind DNA or hydrolyse ATP. These results reveal a new role for ParA/Soj proteins in the regulation of SMC dynamics in bacteria, and yet further complexity in the web of interactions involving chromosome replication, segregation, and organization, controlled by ParAB and SMC.


2021 ◽  
Author(s):  
Pierre Murat ◽  
Guillaume Guilbaud ◽  
Julian E Sale

DNA replication starts with the activation of the replicative helicases, polymerases and associated factors at thousands of origins per S-phase. Due to local torsional constraints generated during licensing and the switch between polymerases of distinct fidelity and proofreading ability following firing, origin activation has the potential to induce DNA damage and mutagenesis. However, whether sites of replication initiation exhibit a specific mutational footprint has not yet been established. Here we demonstrate that mutagenesis is increased at early and highly efficient origins. The elevated mutation rate observed at these sites is caused by two distinct mutational processes consistent with formation of DNA breaks at the origin itself and local error-prone DNA synthesis in the immediate vicinity of the origin. We demonstrate that these replication-dependent mutational processes create the skew in base composition observed at human replication origins. Further, we show that mutagenesis associated with replication initiation exerts an influence on phenotypic diversity in human populations disproportionate to the origins genomic footprint: by increasing mutational loads at gene promoters and splice junctions the presence of an origin influences both gene expression and mRNA isoform usage. These findings have important implications for our understanding of the mutational processes that sculpt the human genome.


2021 ◽  
Author(s):  
Jinchun Wu ◽  
Yang Liu ◽  
Zhengrong Zhangding ◽  
Xuhao Liu ◽  
Chen Ai ◽  
...  

Cohesin participates in loop formation by extruding DNA fibers from its ring-shaped structure. Cohesin dysfunction eliminates chromatin loops but only causes modest transcription perturbation, which cannot fully explain the frequently observed mutations of cohesin in various cancers. Here, we found that DNA replication initiates at more than one thousand extra dormant origins after acute depletion of RAD21, a core subunit of cohesin, resulting in earlier replicating timing at approximately 30% of the human genomic regions. In contrast, CTCF is dispensable for suppressing the early firing of dormant origins that are distributed away from the loop boundaries. Furthermore, greatly elevated levels of gross DNA breaks and genome-wide chromosomal translocations arise in RAD21-depleted cells, accompanied by dysregulated replication timing at dozens of hotspot genes. Thus, we conclude that cohesin coordinates DNA replication initiation to ensure proper replication timing and safeguards genome integrity.


2021 ◽  
Author(s):  
Guillaume Guilbaud ◽  
Pierre Murat ◽  
Helen S Wilkes ◽  
Leticia Koch Lerner ◽  
Julian Sale ◽  
...  

Replication of the human genome initiates within broad zones of ~ 150 kb. The extent to which firing of individual DNA replication origins within initiation zones is spatially stochastic or localised at defined sites remains a matter of debate. A thorough characterisation of the dynamic activation of origins within initiation zones is hampered by the lack of a high-resolution map of both their position and efficiency. To address this shortcoming, we describe a modification of initiation site sequencing (ini-seq) based on density substitution. Newly-replicated DNA is rendered heavy-light (HL) by incorporation of BrdUTP, unreplicated DNA remaining light-light (LL). Replicated HL-DNA is separated from unreplicated LL-DNA by equilibrium density gradient centrifugation, then both fractions are subjected to massive parallel sequencing. This allows precise mapping of 23,905 replication origins simultaneously with an assignment of a replication initiation efficiency score to each. We show that origin firing within initiation zones is not randomly distributed. Rather, origins are arranged hierarchically with a set of very highly efficient origins marking zone boundaries. We propose that these origins explain much of the early firing activity arising within initiation zones, helping to unify the concept of replication initiation zones with the identification of discrete replication origin sites.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiliang Ding ◽  
Matthew M. Edwards ◽  
Ning Wang ◽  
Xiang Zhu ◽  
Alexa N. Bracci ◽  
...  

AbstractDNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome’s replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) – sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.


2021 ◽  
Author(s):  
Weijia Zhang ◽  
Yuvaraj Bhoobalan-Chitty ◽  
Xichuan Zhai ◽  
Hui Yan ◽  
Lars Hestbjerg Hansen ◽  
...  

Prokaryotic viruses express anti-CRISPR (Acr) proteins to inhibit the host adaptive immune system, CRISPR-Cas. While the virus infection biology was shown to be strongly dependent on the relative strengths of the host CRISPR-Cas and viral Acrs, little is known about the role of the core processes of viral life cycle (replication, packaging etc) in defence/anti-defence arms race. Here, we demonstrate the selective advantage provided by a replication initiator, Rep, in the context of CRISPR-Acr interactions. First, we developed a two-host based CRISPR-Cas genome editing tool for the deletion of highly conserved and thus potentially important viral genes. Using this strategy, we deleted a highly conserved Rep-coding gene, gp16, from the genome of Sulfolobus islandicus rod-shaped virus 2 (SIRV2). The knockout mutant (?gp16) produced around 4 fold less virus in a CRISPR-null host, suggesting that Rep is the major contributor to replication initiation in Rudiviridae. Indeed, DNA sequencing revealed Rep-dependent replication initiation from the viral genome termini, in addition to Rep-independent replication initiation from non-terminal sites. Intriguingly, the lack of Rep showed a profound effect on virus propagation in a host carrying CRISPR-Cas immunity. Accordingly, the co-infecting parental virus (rep-containing) outcompeted the Δgp16 mutant much more quickly in CRISPR-containing host than in CRISPR-null host, demonstrating a selective advantage provided by Rep in the presence of host CRISPR-Cas immunity. Despite the non-essentiality, rep is carried by all known members of Rudiviridae, which is likely an evolutionary outcome driven by the ubiquitous presence of CRISPR-Cas in Sulfolobales.


2021 ◽  
Author(s):  
Eri Koyanagi ◽  
Yoko Kakimoto ◽  
Fumiya Yoshifuji ◽  
Toyoaki Natsume ◽  
Atsushi Higashitani ◽  
...  

The division of labour between DNA polymerase underlies the accuracy and efficiency of replication. However, the roles of replicative polymerases have not been directly established in human cells. We developed polymerase usage sequence (Pu-seq) in HCT116 cells and mapped Polε and Polα usage genome wide. The polymerase usage profiles show Polε synthesises the leading strand and Polα contributes mainly to lagging strand synthesis. Combing the Polε and Polα profiles, we accurately predict the genome-wide pattern of fork directionality, zones of replication initiation and termination. We confirm that transcriptional activity shapes the patterns of initiation and termination and, by separately analysing the effect of transcription on both co-directional and converging forks, demonstrate that coupled DNA synthesis of leading and lagging strands in both co-directional and convergent forks is compromised by transcription. Polymerase uncoupling is particularly evident in the vicinity of large genes, including the two most unstable common fragile sites, FRA3B and FRA3D, thus linking transcription-induced polymerase uncoupling to chromosomal instability.


2021 ◽  
Author(s):  
Boyan Li ◽  
Songyuan Zhang ◽  
Le Zhang ◽  
Xiaoying Qiao ◽  
Yiqiang Shi ◽  
...  

Bacteria maintain a stable cell size and a certain DNA content through proliferation as described by classic growth laws. How cells behave when this inherent scaling is broken, however, has rarely been interrogated. Here we engineered Escherichia coli cells with extremely low DNA contents using a tunable synthetic tool CRISPRori that temporarily inhibited chromosome replication initiation. A detailed mechanistic model coupling DNA replication, cell growth, and division revealed a fundamental DNA-centric growth law, which was validated by two observations. First, lineage dynamics were robust to large CRISPRori perturbations with division cycles rapidly restoring through a timer mechanism rather than the adder rule. Second, cellular growth transitioned into a linear regime at low DNA-cytoplasm ratios. Experiments and theory showed that in this regime, cellular resource was redirected to plasmid-borne gene expression. Together with the ability of CRISPRori to bi-directionally modulate plasmid copy numbers, these findings suggest a novel strategy for bio-production enhancement.


Sign in / Sign up

Export Citation Format

Share Document