damage response
Recently Published Documents


TOTAL DOCUMENTS

4738
(FIVE YEARS 1440)

H-INDEX

147
(FIVE YEARS 20)

2022 ◽  
Vol 190 ◽  
pp. 107126
Author(s):  
Gang Wu ◽  
Xin Wang ◽  
Chong Ji ◽  
Qiang Liu ◽  
Xingbo Xie ◽  
...  

2022 ◽  
Author(s):  
Ninel Miriam Vainshelbaum ◽  
Kristine Salmina ◽  
Bogdan I Gerashchenko ◽  
Marija Lazovska ◽  
Pawel Zayakin ◽  
...  

The Circadian Clock (CC) drives the normal cell cycle and reciprocally regulates telomere elongation. However, it can be deregulated in cancer, embryonic stem cells (ESC) and the early embryo. Here, its role in the resistance of cancer cells to genotoxic treatments was assessed in relation to whole-genome duplication (WGD) and telomere regulation. We first evaluated the DNA damage response of polyploid cancer cells and observed a similar impact on the cell cycle to that seen in ESC - overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, and coupling telomere erosion to accelerated cell senescence, favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Next, we revealed a positive correlation between cancer WGD and deregulation of CC assessed by bioinformatics on 11 primary cancer datasets (rho=0.83; p<0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by recombination and return their depolyploidised mitotic offspring to TERT-dependent telomere regulation. Through depolyploidisation and the CC "death loop", the telomeres and Hayflick limit count are thus again renewed. This mechanism along with similar inactivity of the CC in early embryos supports a life-cycle (embryonic) concept of cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Woo-Chang Chung ◽  
Moon Jung Song

The gammaherpesviruses, include the Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation. In gammaherpesvirus infection, PARP1 acts as a key regulator of the virus life cycle: lytic replication and latency. These viruses also develop various strategies to regulate PARP1, facilitating their replication. This review summarizes the roles of PARP1 in the viral life cycle as well as the viral modulation of host PARP1 activity and discusses the implications. Understanding the interactions between the PARP1 and oncogenic gammaherpesviruses may lead to the identification of effective therapeutic targets for the associated diseases.


2022 ◽  
Author(s):  
Ievgeniia Gazo ◽  
Ravindra Naraine ◽  
Ievgen Lebeda ◽  
Aleš Tomčala ◽  
Mariola Dietrich ◽  
...  

Abstract DNA damage during early life stages may have a negative effect on embryo development, inducing malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. We analyzed the survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress-response, which could be applied in toxicological studies on fish embryo. This study is the first complex analysis of the DNA damage response in endangered sturgeons.


2022 ◽  
Vol 119 (3) ◽  
pp. e2115570119
Author(s):  
Magdalena E. Potok ◽  
Zhenhui Zhong ◽  
Colette L. Picard ◽  
Qikun Liu ◽  
Truman Do ◽  
...  

ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) AND ATXR6 are required for the deposition of H3K27me1 and for maintaining genomic stability in Arabidopsis. Reduction of ATXR5/6 activity results in activation of DNA damage response genes, along with tissue-specific derepression of transposable elements (TEs), chromocenter decompaction, and genomic instability characterized by accumulation of excess DNA from heterochromatin. How loss of ATXR5/6 and H3K27me1 leads to these phenotypes remains unclear. Here we provide extensive characterization of the atxr5/6 hypomorphic mutant by comprehensively examining gene expression and epigenetic changes in the mutant. We found that the tissue-specific phenotypes of TE derepression and excessive DNA in this atxr5/6 mutant correlated with residual ATXR6 expression from the hypomorphic ATXR6 allele. However, up-regulation of DNA damage genes occurred regardless of ATXR6 levels and thus appears to be a separable process. We also isolated an atxr6-null allele which showed that ATXR5 and ATXR6 are required for female germline development. Finally, we characterize three previously reported suppressors of the hypomorphic atxr5/6 mutant and show that these rescue atxr5/6 via distinct mechanisms, two of which involve increasing H3K27me1 levels.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2020-216807
Author(s):  
Koralia Paschalaki ◽  
Christos Rossios ◽  
Charis Pericleous ◽  
Mairi MacLeod ◽  
Stephen Rothery ◽  
...  

Cellular senescence contributes to the pathophysiology of chronic obstructive pulmonary disease (COPD) and cardiovascular disease. Using endothelial colony-forming-cells (ECFC), we have demonstrated accelerated senescence in smokers and patients with COPD compared with non-smokers. Subgroup analysis suggests that ECFC from patients with COPD on inhaled corticosteroids (ICS) (n=14; eight on ICS) exhibited significantly reduced senescence (Senescence-associated-beta galactosidase activity, p21CIP1), markers of DNA damage response (DDR) and IFN-γ-inducible-protein-10 compared with patients with COPD not on ICS. In vitro studies using human-umbilical-vein-endothelial-cells showed a protective effect of ICS on the DDR, senescence and apoptosis caused by oxidative stress, suggesting a protective molecular mechanism of action of corticosteroids on endothelium.


Author(s):  
Eudald Felip ◽  
Lucia Gutierrez-Chamorro ◽  
Maica Gómez-Plaza ◽  
Edurne Garcia-Vidal ◽  
Margarita Romeo ◽  
...  

SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1 role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1 role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites and developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low or no expression of SAMHD1 was associated with a positive prognosis in breast, ovarian and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated to low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased &gamma;-H2AX and apoptosis suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced &gamma;-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and thus, modulation of SAMHD1 function may constitute a promising target for the improvement of cancer therapy.


Author(s):  
Rodrigo Gutierrez-Quintana ◽  
David J Walker ◽  
Kaye J Williams ◽  
Duncan M Forster ◽  
Anthony J Chalmers

Abstract Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbour a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DNA damage response and subsequent neuroinflammation. PARP inhibitors have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least three compounds being evaluated in clinical trials. We propose that concomitant use of PARP inhibitors could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumour control by enhancing radiosensitivity.


Sign in / Sign up

Export Citation Format

Share Document