Validation of image-enhanced in vivo microCT based FE models by strain gauge measurements

2006 ◽  
Vol 39 ◽  
pp. S428 ◽  
Author(s):  
L. Muraru ◽  
S.V.N. Jaecques ◽  
J. Demol ◽  
I. Naert ◽  
J. Vander Sloten
Physica B+C ◽  
1976 ◽  
Vol 81 (1) ◽  
pp. 24-34 ◽  
Author(s):  
R.D. Greenough ◽  
C. Underhill ◽  
P. Underhill

1993 ◽  
Vol 176 (1) ◽  
pp. 31-54 ◽  
Author(s):  
K. P. Dial ◽  
A. A. Biewener

In vivo measurements of pectoralis muscle force during different modes of free flight (takeoff, level flapping, landing, vertical ascending and near vertical descending flight) were obtained using a strain gauge attached to the dorsal surface of the delto-pectoral crest (DPC) of the humerus in four trained pigeons (Columba livia). In one bird, a rosette strain gauge was attached to the DPC to determine the principal axis of strain produced by tension of the pectoralis. Strain signals recorded during flight were calibrated to force based on in situ measurements of tetanic force and on direct tension applied to the muscle's insertion at the DPC. Rosette strain recordings showed that at maximal force the orientation of tensile principal strain was −15° (proximo-anterior) to the perpendicular axis of the DPC (or +75° to the longitudinal axis of the humerus), ranging from +15 to −25° to the DPC axis during the downstroke. The consistency of tensile principal strain orientation in the DPC confirms the more general use of single-element strain gauges as being a reliable method for determining in vivo pectoralis force generation. Our strain recordings show that the pectoralis begins to develop force as it is being lengthened, during the final one-third of the upstroke, and attains maximum force output while shortening during the first one-third of the downstroke. Force is sustained throughout the entire downstroke, even after the onset of the upstroke for certain flight conditions. Mean peak forces developed by the pectoralis based on measurements from 40 wingbeats for each bird (160 total) were: 24.9+/−3.1 N during takeoff, 19.7+/−2.0 N during level flight (at speeds of about 6–9 m s-1 and a wingbeat frequency of 8.6+/−0.3 Hz), 18.7+/−2.5 N during landing, 23.7+/−2.7 N during near-vertical descent, and 26.0+/−1.8 N during vertical ascending flight. These forces are considerably lower than the maximum isometric force (67 N, P0) of the muscle, ranging from 28 % (landing) to 39 % (vertical ascending) of P0. Based on estimates of muscle fiber length change determined from high- speed (200 frames s-1) light cine films taken of the animals, we calculate the mass-specific power output of the pigeon pectoralis to be 51 W kg-1 during level flight (approximately 8 m s-1), and 119 W kg-1 during takeoff from the ground. When the birds were harnessed with weighted backpacks (50 % and 100 % of body weight), the forces generated by the pectoralis did not significantly exceed those observed in unloaded birds executing vertical ascending flight. These data suggest that the range of force production by the pectoralis under these differing conditions is constrained by the force- velocity properties of the muscle operating at fairly rapid rates of shortening (4.4 fiber lengths s-1 during level flight and 6.7 fiber lengths s-1 during takeoff).


Author(s):  
Jacques Muiyser ◽  
Daniel N. J. Els ◽  
Sybrand J. van der Spuy ◽  
Albert Zapke

Large-scale cooling system fans often operate under distorted inlet air flow conditions due to the presence of other fans and the prevalent wind conditions. Strain gauge measurements have been used to determine the blade loading as a result of the unsteady aerodynamic forces. However, these measurements are of the blade’s response to the aerodynamic forces and include the deformation as a result of the first natural frequency being excited. When considering the dominant first natural frequency and bending mode of the fan blade, one can approximate the fan blade as a cantilever beam that acts as a single degree-of-freedom system. The response of a single degree-of-freedom system can be calculated analytically for any excitation if the system’s properties are known. The current investigation focuses on using these equations to create an algorithm that can be applied to the measured response of a fan blade to then extract the aerodynamic forces exciting it. This is performed by using a simple non-linear, least-squares optimization algorithm to fit a complex Fourier series to the response and using the coefficients of each harmonic term to determine the Fourier series representing the excitation function. The algorithm was first tested by applying it to the response of a finite element cantilever beam representing a simplified model of the fan blade. Good results were obtained for a variety of excitation forces and as such the algorithm was then applied to the measured response of a full-scale fan blade. The full-scale blade was excited with a shaker where the forcing function could be accurately controlled. Once validated, the algorithm was applied to a set of strain gauge measurements that were recorded at a full-scale fan while in operation. The reconstructed aerodynamic loading showed increased forces when the blade passed beneath the fan bridge as well as when it approached the windward side of the casing.


2013 ◽  
Vol 55 (2) ◽  
pp. 88-95 ◽  
Author(s):  
K Schotte ◽  
H De Backer ◽  
T Nuttens ◽  
A De Wulf ◽  
P Van Bogaert

2017 ◽  
Vol 50 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Antti Mäntylä ◽  
Jussi Göös ◽  
Anton Leppänen ◽  
Tero Frondelius

A detailed contact analysis of a large connecting rod was performed to evaluatethe fretting risk in the big end. Simulation was carried out in Abaqus considering all relevantboundary conditions, such as assembly loads, housing machining and dynamics from a exiblemultibody simulation with elastohydrodynamic bearings. Being one of the most importantvariables, the local coeffcient of friction (COF) and its evolution is calculated during the solutionby using a subroutine in Abaqus. The model is validated by strain gauge measurements in arunning engine. The resulted friction coefficient distribution matches well with the ndings froma laboratory engine. The described methodology increases the accuracy of the fretting damageprediction by using a more realistic friction coefficient denition.


2015 ◽  
Vol 14 (4) ◽  
pp. 87-96 ◽  
Author(s):  
Sam-Deok Cho ◽  
Kwang-Wu Lee ◽  
Zhuang Li ◽  
Uk-Gie Kim

Sign in / Sign up

Export Citation Format

Share Document