measured response
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 4)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3481
Author(s):  
Kristen June Jacobson ◽  
Lea Ann Kinman ◽  
Walter Franklin Owsley ◽  
James Pierre Muir ◽  
William Brandon Smith

Hempseed meal (HSM) is left after oil extraction of hemp and may act as a protein source in livestock. The first phase of this research evaluated variation in nutritive value and in vitro dry matter digestibility (IVDMD) of HSM from various sources in North America; the second phase utilized IVDMD to evaluate the efficacy of hempseed meal as an ingredient in ruminant feed. In phase one, the source had no contribution to variance for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), or crude protein (CP) (p ≥ 0.20). However, batch within source contributed to variation for NDF (50%), ADF (37%), ADL (13%), and CP (31%; p ≤ 0.01). Irrespective of differences in nutritive value, there was no contribution to variation (p = 0.23) of any measured response on in vitro true digestibility (53.0%). In phase two, two experiments evaluated HSM IVDMD as (1) a concentrate replacement or (2) a protein replacement in rations at varying rates. In the first experiment, IVDMD decreased (p < 0.05) with increasing levels of HSM. In the second experiment, IVDMD decreased (p < 0.01) as HSM inclusion increased. Although IVDMD decreased as HSM inclusion increased, values still met the digestibility threshold for ruminant rations, indicating that HSM has potential as an alternative protein ingredient.


Author(s):  
Fredrick Mwaniki ◽  
Ahmed A. Sayyid

The behaviour of a power transformer is complex and difficult to predict during transient conditions or during operation at frequencies below or above its nominal frequency, a phenomenon common in renewable energy plants due to harmonic distortion. Furthermore, the accuracy of a power system simulation depends on the models of critical subsystems such as the power transformers. This paper presents the use of a unique excitation waveform comprising of pseudo-random current impulses to accurately identify the wideband characteristics of a power transformer. By injecting the excitation waveform to the relevant transformer terminals, frequency responses are determined by cross-correlation of the perturbation signal, and the measured response. Compared to the traditional transformer identification methods, the pseudo-random current impulses offer a wideband excitation with a higher degree of controllability such that its spectral energy can be focused in the frequency band of interest. The proposed method was investigated on a 16 kVA, 22 kV/240 V single-phase transformer. The obtained wideband frequency responses provide useful information in harmonic penetration and over-voltage studies and are also used to estimate, with a high degree of accuracy, the lumped parameters of the equivalent transformer broadband circuit model.


2021 ◽  
Vol 60 (3-4) ◽  
pp. 273-283

Abstract Vergil constructs Dido's curse on Aeneas in direct correspondence to Dido's personal experiences; it is thus a measured response to Aeneas' desertion, as it includes a desire that he suffer what Dido herself has endured. Because Dido had initially offered a union between the Trojans and Tyrians and considered herself and Aeneas married, her curse involves both their nations.


2021 ◽  
Vol 16 (7) ◽  
pp. 1074-1085
Author(s):  
Jun Fujiwara ◽  
Akiko Kishida ◽  
Takashi Aoki ◽  
Ryuta Enokida ◽  
Koichi Kajiwara ◽  
...  

In this study, the authors used shake-table tests to assess the modal parameters of a small-scale gymnasium model with simulated damage, the feasibility of estimating the damage to large-span building structures was studied. In Japan, large-span structures, such as gymnasiums, are expected to be used as evacuation shelters when a natural disaster occurs. As the shelter itself may be damaged in case of an earthquake, it is critical to determine whether damage has occurred, where it occurred, and how serious it is, before the shelter is used. The small-scale gymnasium was designed based on the similarity rule. Observed earthquake ground motions scaled to aftershock levels were applied to the model. The natural frequencies and mode shapes were obtained from the measured response accelerations. To study the influence of structural damage on the modal parameters, a gymnasium model with simulated damage was also tested. The results indicate that the modal parameters, e.g., natural frequencies and mode shapes, can be obtained from the response accelerations, and the damage patterns can be estimated from the changes in these modal parameters.


2021 ◽  
Vol 19 ◽  
pp. 298-303
Author(s):  
W.L. Broekman ◽  
◽  
J.B.M. van Waes ◽  
V. Cuk ◽  
J.F.G. Cobben

This paper aims to provide an insight into the measured background changes of harmonics due to operational changes in a typical Dutch transmission grid. Multiple use cases on different locations throughout a meshed 150kV grid have been considered. The nodes that were studied had measured exceedances of planning levels or were indicated to be critical for the future in earlier studies. This study provides an insight into the measured response of harmonics with respect to different operational changes such as specific scheduled outages that occurred and the impact of capacitor banks. Per use-case, individual conclusions are reported. The analysis was conducted on data of power quality meters (PQM) and various other data sources provided by the Dutch TSO TenneT. Data-processing, visualization, and computations were performed using Python. These results are useful for model validation, planning purposes, and maintaining power quality.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1028
Author(s):  
Der-Yuh Lin ◽  
Hung-Pin Hsu ◽  
Han-Sheng Hu ◽  
Yu-Cheng Yang ◽  
Chia-Feng Lin ◽  
...  

Tin disulfide has substantial importance for two-dimensional material-based optoelectronics and sensors due to its unique optoelectrical properties. In this report, we fabricate SnS2 nanosheets using the low-pressure thermal sulfurization process, whose crystal structure and surface morphology are confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements. From photoconductivity measurement and photocurrent mapping, we observe smaller electrode spacing of SnS2 thin films can enhance photodetection. Then, by the H2O2 oxidation processing, we transform SnS2 to SnO2 to detect humidity. The measured response and recovery time can be optimized to 5.6 and 1.0 s, respectively, shorter than those of commercial DHT11 humidity sensor of 32 and 34 s. At suitable bias, humidity sensor can detect human respiration properly at room temperature. Our results show that SnS2 nanosheets exhibit reasonable performance for emergent photodetector applications and humidity sensing.


2021 ◽  
Author(s):  
Linfeng Lyu ◽  
Weidong Zhu

Abstract A new operational modal analysis (OMA) method is developed for estimation of modal parameters (MPs) of a rotating structure (RS) subject to random excitation using a nonuniform rotating beam model, an image processing method, and an improved demodulation method. The solution to the governing equation of a nonuniform rotating beam is derived, which can be considered as the response of the beam measured by a continuously scanning laser Doppler vibrometer (CSLDV) system. A recently developed tracking CSLDV system can track and scan the RS. The image processing method determines the angular position of the RS so that the tracking CSLDV system can sweep its laser spot along a time-varying path on it. The improved demodulation method obtains undamped mode shapes (UMSs) of the RS by multiplying its measured response by sinusoids whose frequencies are its damped natural frequencies (DNFs) that are obtained from the fast Fourier transform of the measured response. Experimental investigation of the OMA method using the tracking CSLDV system is conducted, and MPs of a rotating fan blade (RFB), including DNFs and UMSs, with different constant speeds and its instantaneous MPs with a non-constant speed are estimated. Estimated first DNFs and UMSs of the stationary fan blade and RFB are compared with those from the lifting method that was previously developed by the authors.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 797
Author(s):  
Junyu Zou ◽  
Zhiyong Yang ◽  
Chongchang Mao ◽  
Shin-Tson Wu

We report two high birefringence and low viscosity nematic mixtures for phase-only liquid-crystal-on-silicon spatial light modulators. The measured response time (on + off) of a test cell with 2π phase change at 1550 nm, 5 V operation voltage, and 40 °C is faster than 10 ms. To improve the photostability, a distributed Bragg reflector is designed to cutoff the harmful ultraviolet and blue wavelengths. These materials are promising candidates for future 6G optical communications.


2021 ◽  
Author(s):  
Carl Nikolaus Homann

The nervous system is the most complex organ in the human body, and it is the most essential. However nerve cells are particularly precious as, only like muscle cells, once formed, they do not replicate. This means that neural injuries cannot easily be replaced or repaired. Vitamin D seems to play a pivotal role in protecting these vulnerable and most important structures, but exactly how and to what extend is still subject to debate. Systematically reviewing the vast body of research on the influence of Vitamin D in various neuropathological processes, we found that Vitamin D particularly plays a mitigating role in the development of chronic neurodegeneration and the measured response to acutely acquired traumatic and non-traumatic nerve cells incidents. Adequate serum levels of Vitamin D before the initiation of these processes is increasingly viewed as being neuroprotective. However, comprehensive data on using it as a treatment during the ongoing process or after the injury to neurons is completed are much more ambiguous. A recommendation for testing and supplementation of insufficiencies seems to be well-founded.


2021 ◽  
Vol 71 (03) ◽  
pp. 372-377
Author(s):  
Atipriya Sharma ◽  
Ravi Panwar ◽  
Rajesh Khanna

The simultaneous achievement of multiband absorption, polarisation-insensitive, and angularly stable absorber is a difficult job. Therefore, in this article, an efficient single-layered absorber is designed, critically analysed, fabricated, and experimentally validated. The proposed model incorporates eight sectors loaded a circle inside the square. The four discrete absorption peaks are observed at 4.4 GHz, 6.0 GHz, 14.1 GHz, and 16.0 GHz manifesting absorption intensities of 94%, 84%, 82%, and 92%, respectively. Parametric studies have been also exercised to investigate the influence of discrete geometrical design variables on the proposed absorber. The proposed structure is symmetrical in geometry, consequence in polarisation-independent behaviour. The absorption mechanism is also explained by analysing the surface current, electric field, and magnetic field distributions. Besides, the complex electromagnetic parameters are extracted to realise the absorption phenomenon. Additionally, to validate the simulated results, an optimal sample is fabricated and the measured response is well-matched with simulated ones.


Sign in / Sign up

Export Citation Format

Share Document