strain responses
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 58)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
pp. 136943322110499
Author(s):  
Jianying Ren ◽  
Bing Zhang ◽  
Xinqun Zhu ◽  
Shaohua Li

A new two-step approach is developed for damaged cable identification in a cable-stayed bridge from deck bending strain responses using Support Vector Machine. A Damaged Cable Identification Machine (DCIM) based on support vector classification is constructed to determine the damaged cable and a Damage Severity Identification Machine (DSIM) based on support vector regression is built to estimate the damage severity. A field cable-stayed bridge with a long-term monitoring system is used to verify the proposed method. The three-dimensional Finite Element Model (FEM) of the cable-stayed bridge is established using ANSYS, and the model is validated using the field testing results, such as the mode shape, natural frequencies and its bending strain responses of the bridge under a moving vehicle. Then the validated FEM is used to simulate the bending strain responses of the longitude deck near the cable anchors when the vehicle is passing over the bridge. Different damage scenarios are simulated for each cable with various severities. Based on damage indexes vector, the training datasets and testing datasets are acquired, including single damaged cable scenarios and double damaged cable scenarios. Eventually, DCIM is trained using Support Vector Classification Machine and DSIM is trained using Support Vector Regression Machine. The testing datasets are input in DCIM and DSIM to check their accuracy and generalization capability. Different noise levels including 5%, 10%, and 20% are considered to study their anti-noise capability. The results show that DCIM and DSIM both have good generalization capability and anti-noise capability.


2021 ◽  
pp. 1-14
Author(s):  
Yongzan Liu ◽  
Ge Jin ◽  
Kan Wu

Summary Rayleigh frequency-shift-based distributed strain sensing (RFS-based DSS) is a fiber-optic-based diagnostic technique, which can measure the strain change along the fiber. The spatial resolution of RFS-based DSS can be as low as 0.2 m, and the measuring sensitivity is less than 1 μɛ. Jin et al. (2021) presented a set of DSS data from the Hydraulic Fracture Test Site 2 project to demonstrate its potential to characterize near-wellbore fracture properties and to evaluate perforation efficiency during production and shut-in periods. Extensional strain changes are observed at locations around perforations during a shut-in period. At each perforation cluster, the observed responses of strain changes are significantly different. However, the driving mechanisms for the various observations are not clear, which hinders accurate interpretations of DSS data for near-wellbore fracture characterization. In this study, we applied a coupled flow and geomechanics model to simulate the observed DSS signals under various fractured reservoir conditions. The objective is to improve understanding of the DSS measurements and characterize near-wellbore fracture geometry. We used our in-house coupled flow and geomechanics simulator, which is developed by a combined finite-volume and finite-element method, to simulate strain responses within and near a fracture during shut-in and reopen periods. Local grid refinement was adopted around fractures and the wellbore, so that the simulated strain data can accurately represent the DSS measurements. The plane-strain condition is assumed. Numerical models with various fracture geometries and properties were constructed with representative parameters and in-situ conditions of the Permian Basin. The simulated well was shut-in for 4 days after producing 240 days, and reopened again for 1 day, following the actual field operation as shown in Jin et al. (2021). The characters of the strain changes along the fiber were analyzed and related to near-wellbore fracture properties. A novel diagnostic plot of relative strain change vs. wellbore pressure was presented to infer near-wellbore fracture characteristics. The impacts of permeability and size of the near-wellbore-stimulated region, fracture length, and near-perforation damage zone on strain responses were investigated through sensitivity analysis. The strain responses simulated by our model capture the observed signatures of field DSS measurements. During the shut-in period, clear positive strain changes are observed around the perforation locations, forming a “hump” signature. The shape of the “hump” region and peak value of each “hump” are dependent on the size and permeability of the near-wellbore fractured zone. Once the well is reopened, the strain changes decrease as the pressure drops. However, in one cycle of shut-in and reopen, the strain-pressure diagnostic plot shows path dependency. The discrepancy between the shut-in and reopen periods is highly influenced by the properties of near-wellbore fractured zones. The differences in the strain-pressure diagnostic plots can help to identify the conductive fractures. This study provides better understandings of the DSS measurements and their relations to the near-wellbore fracture properties, which is of practical importance for near-wellbore fracture characterization and completion/stimulation optimization.


Fractals ◽  
2021 ◽  
Author(s):  
WEI CAI ◽  
PING WANG

In this paper, a power-law strain-dependent variable order is first incorporated into the fractional constitutive model and employed to describe mechanical behaviors of aluminum foams under quasi-static compression and tension. Comparative results illustrate that power-law strain-dependent variable order is capable of better describing stress–strain responses compared with the traditional linear one. The evolution of fractional order along with the porosities or relative densities can be well qualitatively interpreted by its physical meaning. Furthermore, the model is also extended to characterize the impact behaviors under large constant strain rates. It is observed that fractional model with sinusoidal variable order agrees well with the experimental data of aluminum foams with impact and non-impact surfaces.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junming Xu ◽  
Yanmin Jia ◽  
Dongwei Liang

PurposePrefabricated pier technology has the advantages of quick construction time, relatively little traffic interference and relatively small environmental impact. However, its applicability under earthquake conditions is not yet fully understood. The seismic performance and influence parameters of a prefabricated concrete pier connected by embedded grouting sleeve (GS) in a pile cap are investigated in this study.Design/methodology/approachTwo prefabricated pier scale model specimens with different reinforcement anchorage lengths and two comparative cast-in-place (CIP) pier model specimens are designed and manufactured for a seismic simulation shaking table. With the continuous increase of input ground motion strength, the changes in basic dynamic characteristics, damage development, acceleration and displacement variation laws, and pier bottom strain responses are compared among the specimen. The finite element software ABAQUS is used to simulate the test pier.FindingsThe crack location of the two prefabricated pier specimens is almost the same as that of the CIP pier specimens; CIP pier specimens show more penetrated cracks than prefabricated pier specimens, as well as an earlier crack penetration time. The acceleration, displacement and strain response of the CIP pier specimens are more affected by earthquake activity than those of the prefabricated pier specimens. The acceleration, displacement and strain responses of the two prefabricated piers are nearly identical. The finite element results are in close agreement with the acceleration and displacement response data collected from the test, which verifies the feasibility of the finite element model established in ABAQUS.Originality/valueA GS connection method is adopted for the prefabricated pier, and on the premise of meeting the minimum reinforcement anchorage length required by the code, this study explores the influences of different reinforcement anchorage lengths on the seismic performance of prefabricated piers in high-intensity areas. A shaking table loading test is used to simulate the real changes of the structure under the earthquake. This work may provide a valuable reference for the design and seismic performance analysis of prefabricated pier, particularly in terms of seismic stability.


Author(s):  
William M West ◽  
Andrew J. Goupee ◽  
Christopher Allen ◽  
Anthony M. Viselli

Abstract As the Floating Offshore Wind industry matures it has become increasingly important for researchers to determine the next generation materials and processes that will allow platforms to be deployed in intermediate (50-85 m) water depths which challenge the efficiency of traditional catenary chain mooring systems and fixed-bottom jacket structures. One such technology, synthetic ropes, have in recent years come to the forefront of this effort. The challenge of designing synthetic rope moorings is the complex nonlinear tension-strain response inherent of some rope material choices. Currently, many numerical tools for modeling the dynamic behavior of FOWTs are limited to mooring materials that have a linear tension- strain response. In this paper an open source FOWT design and analysis program, OpenFAST, was modified to capture the more complex tension-strain responses of synthetic ropes. Simulations from the modified OpenFAST tool were then compared with 1:52-scale test data for a 6MW FOWT Semi- submersible platform in 55m of water subjected to representative design load cases. A strong correlation between the simulations and test data was observed.


2021 ◽  
Vol 56 (4) ◽  
pp. 804-811
Author(s):  
Amir Reza Eskenati ◽  
Amir Mahboob ◽  
Amir Alirezaie ◽  
Reyhaneh Askari ◽  
S.M.S. Kolbadi

This research aimed to consider the necessity of studying different dimensions of existing galleries in gravity concreted dams regarding design limitations and the dam sustainability provision. In recent years, structural optimization has been studied extensively with various considerations. Concrete volume in concrete dams is higher than in other concrete dams. Therefore, if the concrete volume of these dams can be reduced without reducing the dam safety and stability, the costs of constructing such dams could be significantly reduced. For this purpose, in this paper, the Pine Flat Gravity Dam has been selected, its numerical model has been constructed and stimulated under the Taft earthquake. There are three types of small, medium, and large size galleries in different positions. The dam reservoir and foundation in the current study have been modeled, and the foundation has been assumed to have no mass. Then the results have been examined. The innovation of this research is in identifying the most optimal shape and position of the gallery in the body of the weighted concrete dam, which is based on stress and strain responses. It can be concluded that while the medium gallery was in the middle of the dam, the optimum condition for reducing concrete was achieved by maintaining the dam stability.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Sourabh Bhide ◽  
Denisa Gombalova ◽  
Gregor Mönke ◽  
Johannes Stegmaier ◽  
Valentyna Zinchenko ◽  
...  

The intrinsic genetic program of a cell is not sufficient to explain all of the cell’s activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress–strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.


Author(s):  
Ambuj Saxena ◽  
Shashi Prakash Dwivedi ◽  
Ashish K Srivastava ◽  
Shubham Sharma ◽  
Nitin Kotkunde

The present investigation deals with the finite-element analysis of the high strain rate deformation behavior of the quenched and tempered armor-grade rolled and homogeneous armor steel. The rolled and homogeneous armor steel is extensively used in civil and military structures such as battle tanks, armament combat vehicles, combat helicopter, etc. The dynamic deformation behavior of rolled and homogeneous armor steel, that is, resistance against ballistic circumstances relates to its mechanical behavior under high strain rate conditions. In the present research work, a finite-element analysis investigation (using Abaqus finite-element analysis code) has been carried out to evaluate the influence of specimen l/d ratios and high loading strain rates on the deformation behavior and stress–strain responses of the rolled and homogeneous armor steel. Further, an attempt has also been made to check the high strain rate and specimen l/d ratio influence on the strain amplitudes of incident, reflected, and transmitted pulses. The numerical investigation has been carried out with the rolled and homogeneous armor steel specimen with l/d ratios of 1, 0.8, and 0.6. In addition, three high impact strain rates of 2130, 2907, and 3105 s−1 are considered to evaluate the stress–strain responses. The results revealed that the l/d ratio and strain rate have a significant influence on the specimen stress–strain response and the strain amplitudes of incident, reflected, and transmitted pulses. The peak stress value is increased with the increase in the l/d ratio and strain rate. The developed finite-element analysis model has predicted the stress–strain responses with <3% percentage error. The obtained finite-element analysis results have been validated with the experimental investigation with an l/d ratio of 0.6 and a strain rate of 3105 s−1 for rolled and homogeneous armor steel.


Sign in / Sign up

Export Citation Format

Share Document