scholarly journals On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain

2003 ◽  
Vol 190 (1) ◽  
pp. 39-63 ◽  
Author(s):  
Takayoshi Ogawa ◽  
Yasushi Taniuchi
2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Yong Zhou ◽  
Jishan Fan

We prove that a smooth solution of the 3D Cahn-Hilliard-Boussinesq system with zero viscosity in a bounded domain breaks down if a certain norm of vorticity blows up at the same time. Here, this norm is weaker than bmo-norm.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Li Li ◽  
Yanping Zhou

Abstract In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in $\mathbb{R}^{N}\ (N\geq 2)$ R N ( N ≥ 2 ) . By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.


2019 ◽  
Vol 150 (6) ◽  
pp. 2776-2814 ◽  
Author(s):  
Theodore D. Drivas ◽  
Darryl D. Holm

AbstractSmooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.


Sign in / Sign up

Export Citation Format

Share Document