A novel monoclonal antibody which reacts with a high molecular weight neuronal cytoplasmic protein and myelin basic protein (MBP) in a patient with macroglobulinemia

1997 ◽  
Vol 148 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Junichi Kira ◽  
Takashi Inuzuka ◽  
Isao Hozumi ◽  
Hajime Wada ◽  
Kaoru Tanaka ◽  
...  
1986 ◽  
Vol 102 (5) ◽  
pp. 1797-1812 ◽  
Author(s):  
R A Bloodgood ◽  
M P Woodward ◽  
N L Salomonsky

Two carbohydrate-binding probes, the lectin concanavalin A and an anti-carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross-react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the cytoskeletal components generally associated with capping in other systems. The FMG-1 monoclonal antibody inhibits flagellar surface motility visualized as the rapid, bidirectional translocation of polystyrene microspheres.


1994 ◽  
Vol 71 (04) ◽  
pp. 446-451 ◽  
Author(s):  
Xuhua He ◽  
Björn Dahlbäck

SummaryIn human plasma, the anticoagulant vitamin K-dependent protein S exists in two molecular forms, as free protein and complexed to C4b- binding protein (C4BP), a complement regulatory protein. It has been suggested that rabbit plasma also contains two forms of protein S and that the interaction between protein S and C4BP m rabbits can be modulated by synthetic peptides corresponding to a sequence (residues 605-614) in the carboxy-lerminal part of protein S. In this report, we provide itsulls which challenge the conclusion that rabbit plasma contains the complexed form of protein S. The two forms of protein S in human plasma were separated by gel filtration chromatography on Sephacryl S-300 and the presence of protein S in the various fractions analyzed by Western blotting using a monoclonal antibody (HPS 21) directed against the γ-carboxyglutamic acid rich module of human protein S. This antibody, which was found to cross-react with rabbit protein S on Western blotting, was used in affinity purification of protein S from rabbit plasma as well as of recombinant rabbit protein S. HPS 21 specifically recognized protein S in rabbit plasma and did not cross-react with the other vitamin K-depeudenl plasma proteins. To elucidate whether rabbit plasma contained two forms of protein S, rabbit plasma was subjected to gelfiltration chromatography followed by Western blotting of the fractions with monoclonal antibody HPS 21. Protein S was found only in fractions eluting at a position corresponding to that of free protein S. A radiolabelled trace amount of recombinant rabbit protein S added to rabbit plasma chromatographed as free protein S and no high molecular weight form corresponding to a C4BP-protein S complex was detected. Rabbit protein S had the capacity to bind human C4BP and the addition of human C4BP to rabbit plasma changed the elution profile, of rabbit plasma protein S. After the addition of human C4BP, rabbit plasma protein S quantitatively eluted as a high molecular weight complex, suggesting that all the protein S in rabbit plasma was bound to human C4BP. The anticoagulant activity of human protein S is modulated by the complex formation with C4BP. Our results demonstrate that this function of C4BP and the protein S-C4BP complex formation has not been conserved throughout the evolution even though protein S has a preserved C4BP binding site.


Sign in / Sign up

Export Citation Format

Share Document