scholarly journals The Lie algebra structure and controllability of spin systems

2002 ◽  
Vol 350 (1-3) ◽  
pp. 213-235 ◽  
Author(s):  
Francesca Albertini ◽  
Domenico D'Alessandro
2017 ◽  
Vol 69 (02) ◽  
pp. 453-480
Author(s):  
Timothée Marquis ◽  
Karl-Hermann Neeb

Abstract The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie algebras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant. Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over simple Hilbert-Lie algebras , also called affinisations of . They possess a root space decomposition whose corresponding root system is a locally affine root system of one of the 7 families for some infinite set J. To each of these types corresponds a “minimal ” affinisation of some simple Hilbert-Lie algebra , which we call standard. In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra an explicit isomorphism from g to one of the standard affinisations of . The existence of such an isomorphism could also be derived from the classiffication of locally affine root systems, but for representation theoretic purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible with the root decompositions. We illustrate this by applying our isomorphism theorem to the study of positive energy highest weight representations of g. In subsequent work, this paper will be used to obtain a complete classification of the positive energy highest weight representations of affinisations of .


Author(s):  
G. R. Biyogmam ◽  
C. Tcheka ◽  
D. A. Kamgam

The concepts of [Formula: see text]-derivations and [Formula: see text]-central derivations have been recently presented in [G. R. Biyogmam and J. M. Casas, [Formula: see text]-central derivations, [Formula: see text]-centroids and [Formula: see text]-stem Leibniz algebras, Publ. Math. Debrecen 97(1–2) (2020) 217–239]. This paper studies the notions of [Formula: see text]-[Formula: see text]-derivation and [Formula: see text]-[Formula: see text]-central derivation on Leibniz algebras as generalizations of these concepts. It is shown that under some conditions, [Formula: see text]-[Formula: see text]-central derivations of a non-Lie-Leibniz algebra [Formula: see text] coincide with [Formula: see text]-[Formula: see text]-[Formula: see text]-derivations, that is, [Formula: see text]-[Formula: see text]-derivations in which the image is contained in the [Formula: see text]th term of the lower [Formula: see text]-central series of [Formula: see text] and vanishes on the upper [Formula: see text]-central series of [Formula: see text] We prove some properties of these [Formula: see text]-[Formula: see text]-[Formula: see text]-derivations. In particular, it is shown that the Lie algebra structure of the set of [Formula: see text]-[Formula: see text]-[Formula: see text]-derivations is preserved under [Formula: see text]-[Formula: see text]-isoclinism.


2019 ◽  
Vol 30 (03) ◽  
pp. 451-466
Author(s):  
Dietrich Burde ◽  
Vsevolod Gubarev

We introduce post-associative algebra structures and study their relationship to post-Lie algebra structures, Rota–Baxter operators and decompositions of associative algebras and Lie algebras. We show several results on the existence of such structures. In particular, we prove that there exists no post-Lie algebra structure on a pair [Formula: see text], where [Formula: see text] is a simple Lie algebra and [Formula: see text] is a reductive Lie algebra, which is not isomorphic to [Formula: see text]. We also show that there is no post-associative algebra structure on a pair [Formula: see text] arising from a Rota–Baxter operator of [Formula: see text], where [Formula: see text] is a semisimple associative algebra and [Formula: see text] is not semisimple. The proofs use results on Rota–Baxter operators and decompositions of algebras.


1978 ◽  
Vol 21 (1) ◽  
pp. 125-126
Author(s):  
Frank Servedio

A form P of degree r is a homogeneous polynomial in k[Yi, …, Yn] on kn, k a field; Yi are the coordinate functions on kn. Let V(n, r) denote the k-vector space of forms of degree r. Mn(k) = Endk(kn) has canonical Lie algebra structure with [A, B] = AB-BA and it acts as a k-Lie Algebra of kderivations of degree 0 on k[Yi, …, Yn] defined by setting D(A)Y= Yo(-A) for A∈Endk(kn), Y∈V(n,l) = Homk(kn, k) and extending as a k-derivation. Define the orthogonal Lie Algebra, LO(P), of P by LO(P) =


Sign in / Sign up

Export Citation Format

Share Document