loop algebras
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 6)

H-INDEX

15
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1797
Author(s):  
Huanhuan Lu ◽  
Yufeng Zhang

In this article, we adopt two kinds of loop algebras corresponding to the Lie algebra B(0,1) to introduce two line spectral problems with different numbers of even and odd superfunctions. Through generalizing the time evolution λt to a polynomial of λ, two isospectral-nonisospectral super integrable hierarchies are derived in terms of Tu scheme and zero-curvature equation. Among them, the first super integrable hierarchy is further reduced to generalized Fokker–Plank equation and special bond pricing equation, as well as an explicit super integrable system under the choice of specific parameters. More specifically, a super integrable coupled equation is derived and the corresponding integrable properties are discussed, including the Lie point symmetries and one-parameter Lie symmetry groups as well as group-invariant solutions associated with characteristic equation.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


2020 ◽  
Vol 373 (11) ◽  
pp. 7713-7753 ◽  
Author(s):  
Fulin Chen ◽  
Naihuan Jing ◽  
Fei Kong ◽  
Shaobin Tan
Keyword(s):  

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 601
Author(s):  
Orest Artemovych ◽  
Alexander Balinsky ◽  
Denis Blackmore ◽  
Anatolij Prykarpatski

The Lie algebraic scheme for constructing Hamiltonian operators is differential-algebraically recast and an effective approach is devised for classifying the underlying algebraic structures of integrable Hamiltonian systems. Lie–Poisson analysis on the adjoint space to toroidal loop Lie algebras is employed to construct new reduced pre-Lie algebraic structures in which the corresponding Hamiltonian operators exist and generate integrable dynamical systems. It is also shown that the Balinsky–Novikov type algebraic structures, obtained as a Hamiltonicity condition, are derivations on the Lie algebras naturally associated with differential toroidal loop algebras. We study nonassociative and noncommutive algebras and the related Lie-algebraic symmetry structures on the multidimensional torus, generating via the Adler–Kostant–Symes scheme multi-component and multi-dimensional Hamiltonian operators. In the case of multidimensional torus, we have constructed a new weak Balinsky–Novikov type algebra, which is instrumental for describing integrable multidimensional and multicomponent heavenly type equations. We have also studied the current algebra symmetry structures, related with a new weakly deformed Balinsky–Novikov type algebra on the axis, which is instrumental for describing integrable multicomponent dynamical systems on functional manifolds. Moreover, using the non-associative and associative left-symmetric pre-Lie algebra theory of Zelmanov, we also explicate Balinsky–Novikov algebras, including their fermionic version and related multiplicative and Lie structures.


2018 ◽  
Vol 48 (11) ◽  
pp. 1551
Author(s):  
Dou Rujing ◽  
Xu Fan ◽  
Xiao Jie ◽  
Ruan Shiquan

2018 ◽  
Vol 30 (07) ◽  
pp. 1840011
Author(s):  
Jouko Mickelsson

Equivariant twisted K theory classes on compact Lie groups [Formula: see text] can be realized as families of Fredholm operators acting in a tensor product of a fermionic Fock space and a representation space of a central extension of the loop algebra [Formula: see text] using a supersymmetric Wess–Zumino–Witten model. The aim of the present paper is to extend the construction to higher loop algebras using an abelian extension of a 3D current algebra. We have only partial success: Instead of true Fredholm operators we have formal algebraic expressions in terms of the generators of the current algebra and an infinite dimensional Clifford algebra. These give rise to sesquilinear forms in a Hilbert bundle which transform in the expected way with respect to 3D gauge transformations but do not define true Hilbert space operators.


Sign in / Sign up

Export Citation Format

Share Document