The use of model updating for reliable finite element modelling and fault diagnosis of structural components used in nuclear plants

2003 ◽  
Vol 223 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Jyoti K. Sinha ◽  
Michael I. Friswell
2022 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Thomas Sharry ◽  
Hong Guan ◽  
Andy Nguyen ◽  
Erwin Oh ◽  
Nam Hoang

As important links in the transport infrastructure system, cable-stayed bridges are among the most popular candidates for implementing structural health monitoring (SHM) technology. The primary aim of SHM for these bridges is to ensure their structural integrity and satisfactory performance by monitoring their behaviour over time. Finite element (FE) model updating is a well-recognised approach for SHM purposes, as an accurate model serves as a baseline reference for damage detection and long-term monitoring efforts. One of the many challenges is the development of the initial FE model that can accurately reflect the dynamic characteristics and the overall behaviour of a bridge. Given the size, slenderness, use of long cables, and high levels of structural redundancy, precise initial models of long-span cable-stayed bridges are desirable to better facilitate the model updating process and to improve the accuracy of the final updated model. To date, very few studies offer in-depth discussions on the modelling approaches for cable-stayed bridges and the methods used for model updating. As such, this article presents the latest advances in finite element modelling and model updating methods that have been widely adopted for cable-stayed bridges, through a critical literature review of existing research work. An overview of current SHM research is presented first, followed by a comprehensive review of finite element modelling of cable-stayed bridges, including modelling approaches of the deck girder and cables. A general overview of model updating methods is then given before reviewing the model updating applications to cable-stayed bridges. Finally, an evaluation of all available methods and assessment for future research outlook are presented to summarise the research achievements and current limitations in this field.


2019 ◽  
Vol 1262 ◽  
pp. 012011
Author(s):  
M A S Aziz Shah ◽  
M A Yunus ◽  
M N Abdul Rani ◽  
M. A. Zulkofli

Author(s):  
Patrick Ienny ◽  
Anne-Sophie Caro-Bretelle ◽  
Emmanuel Pagnacco

Inverse problem resolution methods are widely used in the determination of material behaviour. The optimisation of the parameters, as inputs into a well-defined system, is obtained from observed outputs such as kinematic field measurements. The aim of this paper is to summarize the research concerning one inverse method, Finite Element Modelling Updating, based on the use of these field measurements. This method is based on a combination of three components, described in the following three sections. First we present the optical field measurements applied to multi-axially loaded objects, together with their performances. Then we outline the use of Finite Element Modelling for achieving a correlation between numerical fields and their experimental counterparts. Finally we describe the identification process, together with cost functions, minimisation procedure and model validation analysis.


Sign in / Sign up

Export Citation Format

Share Document