reinforced concrete beams
Recently Published Documents





Yingguang Fang ◽  
Yafei Xu ◽  
Renguo Gu

AbstractRecent years have witnessed that the prefabricated concrete structure is in the widespread use of building structures. This structure, however, still has some weaknesses, such as excessive weight of components, high requirements for construction equipment, difficult alignment of nodes, and poor installation accuracy. In order to handle the problems mentioned above, the prefabricated component made of lightweight concrete is adopted. At the same time, this prefabricated component is beneficial to reducing the load of the building structure itself and improving the safety and economy of the building structure. Nevertheless, it is rarely found that the researches and applications of lightweight concrete for stressed members are conducted. In this context, this paper replaces ordinary coarse aggregate with lightweight ceramsite or foam based on the C60 concrete mix ratio so as to obtain a mix ratio of C40 lightweight concrete that meets the engineering standards. Besides, ceramsite concrete beams and foamed concrete beams are fabricated. Moreover, through three-point bending tests, this paper further explores the mechanical properties of lightweight concrete beams and plain concrete beams during normal use conditions. As demonstrated in the results, the mechanical properties of the foamed concrete beam are similar to those of the plain concrete beam. Compared to plain concrete beams, the density of foamed concrete beams was lower by 23.4%; moreover, the ductility and toughness of foamed concrete were higher by 13% and 3%, respectively. However, in comparison with the plain concrete beam, the mechanical properties of the ceramsite concrete beam have some differences, with relatively large dispersion and obvious brittle failure characteristics. Moreover, in consideration of the nonlinear deformation characteristics of reinforced concrete beams, the theoretical calculation value of beam deflection was given in this paper based on the assumption of flat section and the principle of virtual work. The theoretically calculated deflection values of ordinary concrete beams and foamed concrete beams are in good agreement with the experimental values under normal use conditions, verifying the rationality and effectiveness of the calculation method. The research results of this paper can be taken as a reference for similar engineering designs.

2022 ◽  
Vol 22 (1) ◽  
Bartosz Piątek ◽  
Tomasz Siwowski

AbstractThe paper presents the research on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymer (CFRP) strips with various configurations in terms of anchoring and tensioning. The five full-scale RC beams with the total length of 6.0 m were strengthened with passive strips, without and with mechanical anchorages at their ends, as well as with strips tensioned by the novel prestressing system with three various prestressing levels ranging from 30 to 50% of the CFRP tensile strength. All RC beams were tested under static flexural load up to failure and they were investigated in a full range of flexural behaviour, including the post-debonding phase. The main parameters considered in this study include the use of mechanical anchorages, the effect of tensioning the strips and the influence of the various prestressing levels. Several performance indicators have been established to evaluate the beams’ behaviour. The study revealed that the RC beams strengthened using tensioned CFRP strips exhibited a higher cracking, yielding and ultimate moments as compared to the beams with passively bonded CFRP strips. Moreover, increasing the beams’ prestressing level has a significant positive influence on the performance of strengthened beams. However, it did not affect the ultimate load-bearing capacity of the beams. The optimal prestressing level for the novel system has been determined as 60% of CFRP tensile strength.

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Aqeel H. Chkheiwer ◽  
Mazin A. Ahmed ◽  
Zahir M. N. Hassan

This study shows the torsional conduct of aggregate streaming beams of reinforced concrete recycling. Pure torsion was perceived for 15 reinforced concrete beams containing recycled concrete aggregates. The beams were grouped into five lengths and cross-sectional groups. The study’s principal parameters were the various percentages of longitudinal steel reinforcement and the proportions of recycled aggregates. The beams were purely twisted until failure and investigated for torsional and crack behaviour. The findings show that the beams with maximum steel enhancement and standard aggregate exhibited maximum cracking power and ultimate torsional strength. Recycled aggregates increased the presence of splitting and the ultimate strength, and the effects of steel strengthening in recycled beams were apparent. In a second analysis, the whole torsional reaction of the beams was analytically predicted. A soft truss model was used and matched with test results for standard beams. A strong compromise was generally reached.

Mohammad Sadegh Barkhordari ◽  
De-Cheng Feng ◽  
Mohsen Tehranizadeh

Earthquakes occurred in recent years have highlighted the need to examine the strength of reinforced concrete (RC) members. RC beams are one of the elements of reinforced concrete structures. Due to the dramatic increase in the population and the number of medium/high-rise buildings, in recent years, the beams of buildings have been mainly designed and executed in the type of deep beams. In this study, the artificial neural network (ANN) with optimization algorithms, including particle swarm optimization (PSO), Archimedes optimization algorithm (AOA), and sparrow search algorithm (SSA), are used to determine the shear strength of reinforced concrete deep (RCD) beams. 271 samples from experimental tests are employed to develop algorithms. The results of this study, design codes equations, and previous research are compared. Comparison between the results shows that the PSO-ANN algorithm is more accurate than previous methods. Finally, SHApley Additive exPlanations (SHAP) method is utilized to explain the predictions. SHAP reveals that the beam span and the ratio of the beam span to beam depth have the highest impact in predicting shear strength.

2022 ◽  
pp. 136943322110737
Nariman Fouad ◽  
Mohamed A Saifeldeen

This article proposes a new technique of monitoring neutral axis positions and deflection of Reinforced Concrete (RC) beam during corrosion of steel reinforcement using macro-strain measurements of distributed long-gauge sensors. A different group of distributed long-gauge Packaged Carbon Fiber Line (PCFL) sensors with self-compensation and effective packaging system is installed on the compression and tension fibers of the concrete surface and steel reinforcements of RC beam to verify the proposed method experimentally. An accelerated corrosion method utilizing a salt solution and the constant current was used to achieve the required corrosion levels. The estimated deflection measured by the developed method is compared with the results using Linear Variable Displacement Transducer (LVDTs). It has been demonstrated that long-gauge PCFL sensors could provide the same accuracy. The distributed measured strains were utilized to evaluate the deterioration of the structure’s health with the advance of corrosion. Based on corrosion monitoring experimental results, it can be confirmed that using distributed PCFL sensors mounted on steel reinforcements or concrete surface, the locations and progress of the damage with corrosion time can be detected effectively. The maximum error in the estimated deflection from PCFL sensors mounted on the concrete surface compared to the LVDTs before the onset and after 24 h of accelerated corrosion was 0.5% and 2.5%, respectively.

Rendy Thamrin ◽  
Zaidir Zaidir ◽  
Devitasari Iwanda

An experimental study was carried out to evaluate the ductility of reinforced concrete beams longitudinally reinforced with hybrid FRP-Steel bars. The specimens were fourteen reinforced concrete beams with and without hybrid reinforcement. The test variables were bars position, the ratio of longitudinal reinforcement, and the type of FRP bars. The beams were loaded up to failure using a four-point bending test. The performance of the tested beams was observed using the load-deflection curve obtained from the test. Numerical analysis using the fiber element model was used to examine the growth of neutral axis depth due to the effect of test variables. The neutral axis curves were then used to further estimate the neutral axis angle and neutral axis displacement index. The test results show that the position of the reinforcement greatly influences the flexural behavior of the beam with hybrid reinforcement. It was observed from the test that the flexural capacity of beams with hybrid reinforcement is 4% to 50% higher than that of the beams with conventional steel bars depending on bars position and the ratio of longitudinal reinforcement. The ductility decreases as the hybrid reinforcement ratio (Af/As) increases. This study also showed that a numerical model developed can predict the flexural behavior of beams with hybrid reinforcement with reasonable accuracy.

2022 ◽  
Vol 12 (2) ◽  
pp. 685
Zeljko Kos ◽  
Yevhenii Klymenko ◽  
Irina Karpiuk ◽  
Iryna Grynyova

This work presents a proposed engineering method for calculating the bearing capacity of the supporting sections of continuous monolithic reinforced concrete tape beams, which combine pressed or driven reinforced concrete piles into a single foundation design. According to the mechanics of reinforced concrete, it is recommended to consider the grillage to be a continuous reinforced concrete beam, which, as a rule, collapses according to the punching scheme above the middle support (pile caps), with the possible formation of a plastic hinge above it. The justification for the proposed method included the results of experimental studies, comparisons of the experimental tensile shear force with the results of calculations according to the design standards of developed countries, and modeling of the stress-strain state of the continuous beam grillage in the extreme span and above the middle support-pile adverse transverse load in the form of concentrated forces. The work is important, as it reveals the physical essence of the phenomenon and significantly clarifies the physical model of the operation of inclined sections over the middle support. The authors assessed the influence of design factors in continuous research elements, and on the basis of this, the work of the investigated elements under a transverse load was simulated in the Lira-Sapr PC to clarify the stress-strain state and confirm the scheme of their destruction adopted in the physical model by the finite element method in nonlinear formulation. Based on the analysis and comparison of the experimental and simulation results, a design model was proposed for bearing capacity near the supporting sections of continuous reinforced concrete beams and high grillages that is capable of adequately determining their strength.

Sign in / Sign up

Export Citation Format

Share Document