Time domains of the hypoxic ventilatory response

1998 ◽  
Vol 112 (2) ◽  
pp. 123-134 ◽  
Author(s):  
F.L Powell ◽  
W.K Milsom ◽  
G.S Mitchell
2001 ◽  
Vol 124 (2) ◽  
pp. 117-128 ◽  
Author(s):  
G.S Mitchell ◽  
F.L Powell ◽  
S.R Hopkins ◽  
W.K Milsom

2011 ◽  
Vol 181 (3) ◽  
pp. 311-333 ◽  
Author(s):  
Cosima Porteus ◽  
Michael S. Hedrick ◽  
James W. Hicks ◽  
Tobias Wang ◽  
William K. Milsom

2017 ◽  
Vol 596 (15) ◽  
pp. 3245-3269 ◽  
Author(s):  
Vishaal Rajani ◽  
Yong Zhang ◽  
Venkatesh Jalubula ◽  
Vladimir Rancic ◽  
Shahriar SheikhBahaei ◽  
...  

1999 ◽  
Vol 118 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Jay K. Herman ◽  
Ken D. O’Halloran ◽  
Gordon S. Mitchell ◽  
Gerald E. Bisgard

2016 ◽  
Vol 220 ◽  
pp. 69-80 ◽  
Author(s):  
Sarah Logan ◽  
Kristina E. Tobin ◽  
Sarah C. Fallon ◽  
Kevin S. Deng ◽  
Amy B. McDonough ◽  
...  

1989 ◽  
Vol 66 (3) ◽  
pp. 1152-1157 ◽  
Author(s):  
Y. Matsuzawa ◽  
K. Fujimoto ◽  
T. Kobayashi ◽  
N. R. Namushi ◽  
K. Harada ◽  
...  

It has been proposed that subjects susceptible to high-altitude pulmonary edema (HAPE) show exaggerated hypoxemia with relative hypoventilation during the early period of high-altitude exposure. Some previous studies suggest the relationship between the blunted hypoxic ventilatory response (HVR) and HAPE. To examine whether all the HAPE-susceptible subjects consistently show blunted HVR at low altitude, we evaluated the conventional pulmonary function test, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response (HCVR) in ten lowlanders who had a previous history of HAPE and compared these results with those of eight control lowlanders who had no history of HAPE. HVR was measured by the progressive isocapnic hypoxic method and was evaluated by the slope relating minute ventilation to arterial O2 saturation (delta VE/delta SaO2). HCVR was measured by the rebreathing method of Read. All measurements were done at Matsumoto, Japan (610 m). All the HAPE-susceptible subjects showed normal values in the pulmonary function test. In HCVR, HAPE-susceptible subjects showed relatively lower S value, but there was no significant difference between the two groups (1.74 +/- 1.16 vs. 2.19 +/- 0.4, P = NS). On the other hand, HAPE-susceptible subjects showed significantly lower HVR than control subjects (-0.42 +/- 0.23 vs. -0.87 +/- 0.29, P less than 0.01). These results suggest that HAPE-susceptible subjects more frequently show low HVR at low altitude. However, values for HVR were within the normal range in 2 of 10 HAPE-susceptible subjects. It would seem therefore that low HVR alone need not be a critical factor for HAPE. This could be one of several contributing factors.


2002 ◽  
Vol 93 (4) ◽  
pp. 1498-1505 ◽  
Author(s):  
Nathan E. Townsend ◽  
Christopher J. Gore ◽  
Allan G. Hahn ◽  
Michael J. McKenna ◽  
Robert J. Aughey ◽  
...  

This study determined whether “living high-training low” (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8–10 h/day overnight in normobaric hypoxia (∼2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (ΔV˙e/ΔSpO2 , whereV˙e is minute ventilation and SpO2 is blood O2 saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal Pco 2(Pet CO2 ) and V˙e were measured during room air breathing at rest. HVR (l · min−1 · %−1) was higher ( P < 0.05) in LHTLc than in Con at N1 (0.56 ± 0.32 vs. 0.28 ± 0.16), N3 (0.69 ± 0.30 vs. 0.36 ± 0.24), N10 (0.79 ± 0.36 vs. 0.34 ± 0.14), N15 (1.00 ± 0.38 vs. 0.36 ± 0.23), and Post (0.79 ± 0.37 vs. 0.36 ± 0.26). HVR at N15 was higher ( P < 0.05) in LHTLi (0.67 ± 0.33) than in Con and in LHTLc than in LHTLi. Pet CO2 was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia ( P < 0.05). No significant differences were observed for V˙e at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases Pet CO2 in normoxia, without change inV˙e. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.


Sign in / Sign up

Export Citation Format

Share Document